Abstract
We introduce a modal logic for describing statistical knowledge, which we call statistical epistemic logic. We propose a Kripke model dealing with probability distributions and stochastic assignments, and show a stochastic semantics for the logic. To our knowledge, this is the first semantics for modal logic that can express the statistical knowledge dependent on non-deterministic inputs and the statistical significance of observed results. By using statistical epistemic logic, we express a notion of statistical secrecy with a confidence level. We also show that this logic is useful to formalize statistical hypothesis testing and differential privacy in a simple and abstract manner.
This work was supported by JSPS KAKENHI Grant Number JP17K12667, and by Inria under the project LOGIS.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
It is left for future work to investigate the case of infinite numbers of states.
- 2.
Since \(\mathcal {W}\) is not a multiset, each world in \(\mathcal {W}\) is a different distribution of states. However, this is still expressive enough when we take \(\mathcal {S}\) to be sufficiently large.
- 3.
Since the relation \(\mathcal {R}_{\!\varepsilon }\) is symmetric, the symmetry axiom (B) also holds.
References
Ábrahám, E., Bonakdarpour, B.: HyperPCTL: a temporal logic for probabilistic hyperproperties. In: McIver, A., Horvath, A. (eds.) QEST 2018. LNCS, vol. 11024, pp. 20–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99154-2_2
Bana, G.: Models of objective chance: an analysis through examples. In: Hofer-Szabó, G., Wroński, L. (eds.) Making it Formally Explicit. ESPS, vol. 6, pp. 43–60. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55486-0_3
Barthe, G., Gaboardi, M., Arias, E.J.G., Hsu, J., Kunz, C., Strub, P.: Proving differential privacy in Hoare logic. In: Proceedings of CSF, pp. 411–424 (2014)
Baskar, A., Ramanujam, R., Suresh, S.P.: Knowledge-based modelling of voting protocols. In: Proceedings of TARK, pp. 62–71 (2007)
Biondi, F., Kawamoto, Y., Legay, A., Traonouez, L.: Hybrid statisticalestimation of mutual information and its application to information flow. Formal Asp. Comput. 31(2), 165–206 (2019). https://doi.org/10.1007/s00165-018-0469-z
Chadha, R., Delaune, S., Kremer, S.: Epistemic logic for the applied pi calculus. In: Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS/FORTE -2009. LNCS, vol. 5522, pp. 182–197. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02138-1_12
Chatzikokolakis, K., Gebler, D., Palamidessi, C., Xu, L.: Generalized bisimulation metrics. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 32–46. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44584-6_4
Chatzikokolakis, K., Knight, S., Palamidessi, C., Panangaden, P.: Epistemic strategies and games on concurrent processes. ACM Trans. Comput. Logic 13(4), 28:1–28:35 (2012). https://doi.org/10.1145/2362355.2362356
Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Anonymity protocols as noisy channels. Inf. Comput. 206(2–4), 378–401 (2008). https://doi.org/10.1016/j.ic.2007.07.003
Dechesne, F., Mousavi, M.R., Orzan, S.: Operational and epistemic approaches to protocol analysis: bridging the gap. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 226–241. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75560-9_18
Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_1
Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy. Found. Trends® Theor. Comput. Sci. 9(3–4), 211–407 (2014)
van Eijck, J., Orzan, S.: Epistemic verification of anonymity. Electr. Notes Theor. Comput. Sci. 168, 159–174 (2007). https://doi.org/10.1016/j.entcs.2006.08.026
Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning About Knowledge. The MIT Press, Cambridge (1995)
French, T., Gozzard, A., Reynolds, M.: Dynamic aleatoric reasoning in games of bluffing and chance. In: Proceedings of AAMAS, pp. 1964–1966 (2019)
Pearson, K.: On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Lond. Edinb. Dublin Philos. Mag. J. Sci. 50(302), 157–175 (1900)
Garcia, F.D., Hasuo, I., Pieters, W., van Rossum, P.: Provable anonymity. In: Proceedings of FMSE, pp. 63–72 (2005). https://doi.org/10.1145/1103576.1103585
Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic programming. In: Proceedings of FOSE, pp. 167–181 (2014). https://doi.org/10.1145/2593882.2593900
Halpern, J.Y.: An analysis of first-order logics of probability. Artif. Intell. 46(3), 311–350 (1990). https://doi.org/10.1016/0004-3702(90)90019-V
Halpern, J.Y.: Reasoning About Uncertainty. The MIT Press, Cambrdige (2003)
Halpern, J.Y., O’Neill, K.R.: Anonymity and information hiding in multiagent systems. In: Proceedings of CSFW, pp. 75–88 (2003)
Hughes, D., Shmatikov, V.: Information hiding, anonymity and privacy: a modular approach. J. Comput. Secur. 12(1), 3–36 (2004)
Jonker, H.L., Pieters, W.: Receipt-freeness as a special case of anonymity in epistemic logic. In: Proceedings of Workshop On Trustworthy Elections (WOTE 2006), June 2006
Kawamoto, Y.: Towards logical specification of statistical machine learning. In: Proceedings of SEFM (2019, to appear)
Kawamoto, Y., Mano, K., Sakurada, H., Hagiya, M.: Partial knowledge of functions and verification of anonymity. Trans. Jpn. Soc. Ind. Appl. Math. 17(4), 559–576 (2007). https://doi.org/10.11540/jsiamt.17.4_559. (in Japanese)
Kawamoto, Y., Murakami, T.: On the anonymization of differentially private location obfuscation. In: Proceedings of ISITA, pp. 159–163 (2018)
Kawamoto, Y., Murakami, T.: Local obfuscation mechanisms for hiding probability distributions. In: Proceedings of ESORICS (2019, to appear)
Kooi, B.P.: Probabilistic dynamic epistemic logic. J. Log. Lang. Inf. 12(4), 381–408 (2003). https://doi.org/10.1023/A:1025050800836
Kripke, S.A.: Semantical analysis of modal logic i normal modal propositional calculi. Math. Log. Q. 9(5–6), 67–96 (1963)
Küsters, R., Truderung, T.: An epistemic approach to coercion-resistance for electronic voting protocols. In: Proceedings of S&P, pp. 251–266 (2009). https://doi.org/10.1109/SP.2009.13
Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9_11
Lewis, D.: A subjectivist’s guide to objective chance. In: Harper, W.L., Stalnaker, R., Pearce G. (eds)Studies in Inductive Logic and Probability, vol. II, pp. 263–293. University of California Press, Berkeley (1980)
Lin, J.: Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory 37(1), 145–151 (1991). https://doi.org/10.1109/18.61115
Mano, K., Kawabe, Y., Sakurada, H., Tsukada, Y.: Role interchange for anonymity and privacy of voting. J. Log. Comput. 20(6), 1251–1288 (2010). https://doi.org/10.1093/logcom/exq013
van der Meyden, R., Su, K.: Symbolic model checking the knowledge of the dining cryptographers. In: Proceedings of CSFW, p. 280 (2004). https://doi.org/10.1109/CSFW.2004.19
Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box probabilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 202–215. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9_16
Syverson, P.F., Stubblebine, S.G.: Group principals and the formalization of anonymity. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 814–833. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48119-2_45
Vaserstein, L.: Markovian processes on countable space product describing large systems of automata. Probl. Peredachi Inf. 5(3), 64–72 (1969)
von Wright, G.H.: An Essay in Modal Logic. North-Holland Pub. Co., Amsterdam (1951)
Younes, H.L.: Verification and planning for stochastic processes with asynchronous events. Ph.D. thesis, Carnegie Mellon University (2005)
Acknowledgments
When I was a postdoctoral researcher with Catuscia Palamidessi in 2014, I tried to work alone on this research, but could not manage. Through my collaboration with her on quantitative information flow for the last several years, I obtained missing pieces of techniques needed to develop my ideas into this paper. I am grateful to her for our research collaboration and her helpful advice until today.
I would like to thank the reviewers for their helpful and insightful comments. I am also grateful to Ken Mano, Gergei Bana, and Ryuta Arisaka for their useful comments on preliminary manuscripts.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Kawamoto, Y. (2019). Statistical Epistemic Logic. In: Alvim, M., Chatzikokolakis, K., Olarte, C., Valencia, F. (eds) The Art of Modelling Computational Systems: A Journey from Logic and Concurrency to Security and Privacy. Lecture Notes in Computer Science(), vol 11760. Springer, Cham. https://doi.org/10.1007/978-3-030-31175-9_20
Download citation
DOI: https://doi.org/10.1007/978-3-030-31175-9_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-31174-2
Online ISBN: 978-3-030-31175-9
eBook Packages: Computer ScienceComputer Science (R0)