Abstract
We survey some tools and techniques for determining geometric properties of a link complement from a link diagram. In particular, we survey the tools used to estimate geometric invariants in terms of basic diagrammatic link invariants. We focus on determining when a link is hyperbolic, estimating its volume, and bounding its cusp shape and cusp area. We give sample applications and state some open questions and conjectures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
WYSIWYG stands for “what you see is what you get”.
References
C. Adams, Hyperbolic Structures on Link Complements (University of Wisconsin, Madison, 1983). Ph.D. thesis
C. Adams, Hyperbolic Knots, Handbook of knot theory (Elsevier B. V., Amsterdam, 2005), pp. 1–18. MR 2179259
C. Adams, Triple crossing number of knots and links. J. Knot Theory Ramif. 22(2), 1350006 (2013). MR 3037297
C. Adams, Bipyramids and bounds on volumes of hyperbolic links. Topology Appl. 222, 100–114 (2017). MR 3630197
C. Adams, H. Bennett, C. Davis, M. Jennings, J. Kloke, N. Perry, E. Schoenfeld, Totally geodesic Seifert surfaces in hyperbolic knot and link complements. II. J. Differ. Geom. 79(1), 1–23 (2008). MR 2414747 (2009b:57032)
C. Adams, A. Colestock, J. Fowler, W. Gillam, E. Katerman, Cusp size bounds from singular surfaces in hyperbolic 3-manifolds. Trans. Am. Math. Soc. 358(2), 727–741 (electronic) (2006). MR MR2177038 (2006k:57041)
C.C. Adams, Limit volumes of hyperbolic three-orbifolds. J. Differ. Geom. 34(1), 115–141 (1991). MR 1114455 (92d:57029)
C.C. Adams, Toroidally alternating knots and links. Topology 33(2), 353–369 (1994)
C.C. Adams, J.F. Brock, J. Bugbee, T.D. Comar, K.A. Faigin, A.M. Huston, A.M. Joseph, D. Pesikoff, Almost alternating links. Topology Appl. 46(2), 151–165 (1992)
I. Agol, Lower bounds on volumes of hyperbolic Haken 3-manifolds (1999). arXiv:math/9906182
I. Agol, Bounds on exceptional Dehn filling. Geom. Topol. 4, 431–449 (2000). MR 1799796 (2001j:57019)
I. Agol, The minimal volume orientable hyperbolic 2-cusped 3-manifolds. Proc. Am. Math. Soc. 138(10), 3723–3732 (2010). MR 2661571
I. Agol, Ideal triangulations of pseudo-Anosov mapping tori. Topol. Geom. Dimens. Three, Contemp. Math. 560, Amer. Math. Soc. (Providence, 2011), pp. 1–17. MR 2866919
I. Agol, P.A. Storm, W.P. Thurston, Lower bounds on volumes of hyperbolic Haken 3-manifolds. J. Am. Math. Soc. 20(4), 1053–1077 (2007). with an appendix by Nathan Dunfield
C.K. Atkinson, D. Futer, Small volume link orbifolds. Math. Res. Lett. 20(6), 995–1016 (2013). MR 3228616
C.K. Atkinson, D. Futer, The lowest volume 3-orbifolds with high torsion. Trans. Am. Math. Soc. 369(8), 5809–5827 (2017). MR 3646779
D. Bachman, S. Schleimer, Distance and bridge position. Pac. J. Math. 219(2), 221–235 (2005). MR 2175113 (2007a:57028)
K.L. Baker, Surgery descriptions and volumes of Berge knots. II. Descriptions on the minimally twisted five chain link. J. Knot Theory Ramif. 17(9), 1099–1120 (2008). MR MR2457838
R. Benedetti, C. Petronio, Lectures on Hyperbolic Geometry (Universitext, Springer, Berlin, 1992). MR MR1219310 (94e:57015)
G. Besson, G. Courtois, S. Gallot, Entropies et rigidités des espaces localement symétriques de courbure strictement négative. Geom. Funct. Anal. 5(5), 731–799 (1995). MR 1354289
S.A. Bleiler, C.D. Hodgson, Spherical space forms and Dehn filling. Topology 35(3), 809–833 (1996)
J. Boland, C. Connell, J. Souto, Volume rigidity for finite volume manifolds. Am. J. Math. 127(3), 535–550 (2005). MR 2141643
K. Böröczky, Packing of spheres in spaces of constant curvature. Acta Math. Acad. Sci. Hungar. 32(3–4), 243–261 (1978). MR MR512399 (80h:52014)
S.D. Burton, E. Kalfagianni, Geometric estimates from spanning surfaces. Bull. Lond. Math. Soc. 49(4), 694–708 (2017)
R.D. Canary, D.B.A. Epstein, P.L. Green, Notes on notes of Thurston, in Fundamentals of hyperbolic geometry: selected expositions, vol. 328, London Mathematical Society Lecture Note series (Cambridge University Press, Cambridge, 2006), pp. 1–115. With a new foreword by Canary. MR 2235710
A. Champanerkar, I. Kofman, J.S. Purcell, Geometrically and diagrammatically maximal knots. J. Lond. Math. Soc. (2) 94(3), 883–908 (2016). MR 3614933
A. Champanerkar, I. Kofman, J.S. Purcell, Volume bounds for weaving knots. Algebr. Geom. Topol. 16 (6), 3301–3323 (2016). MR 3584259
Y.-E. Choi, Positively oriented ideal triangulations on hyperbolic three-manifolds. Topology 43(6), 1345–1371 (2004). MR 2081429
M. Culler, N.M. Dunfield, M. Goerner, J.R. Weeks, SnapPy, a computer program for studying the geometry and topology of \(3\)-manifolds (2017). http://snappy.computop.org
O. Dasbach, A. Tsvietkova, A refined upper bound for the hyperbolic volume of alternating links and the colored Jones polynomial. Math. Res. Lett. 22(4), 1047–1060 (2015). MR 3391876
O. Dasbach, A. Tsvietkova, Simplicial volume of links from link diagrams. Math. Proc. Camb. Phil. Soc. 166(1), 75–81 (2019). MR 3893305
M. Eudave-Muñoz, J. Luecke, Knots with bounded cusp volume yet large tunnel number. J. Knot Theory Ramif. 8(4), 437–446 (1999). MR 1697382 (2000g:57007)
K. Finlinson, J.S. Purcell, Volumes of Montesinos links. Pac. J. Math. 282(1), 63–105 (2016). MR 3463425
D. Futer, F. Guéritaud, Angled decompositions of arborescent link complements. Proc. Lond. Math. Soc. (3) 98(2), 325–364 (2009). MR 2481951
D. Futer, F. Guéritaud, From angled triangulations to hyperbolic structures, in Interactions between hyperbolic geometry, quantum topology and number theory, vol. 541, Contemporary Mathematics (American Mathematical Society, Providence, 2011), pp. 159–182. MR 2796632
D. Futer, F. Guéritaud, Explicit angle structures for veering triangulations. Algebr. Geom. Topol. 13(1), 205–235 (2013). MR 3031641
D. Futer, E. Kalfagianni, J.S. Purcell, Dehn filling, volume, and the Jones polynomial. J. Differ. Geom. 78(3), 429–464 (2008). MR 2396249
D. Futer, E. Kalfagianni, J.S. Purcell, Symmetric links and Conway sums: volume and Jones polynomial. Math. Res. Lett. 16(2), 233–253 (2009). MR 2496741
D. Futer, E. Kalfagianni, J.S. Purcell, Cusp areas of Farey manifolds and applications to knot theory. Int. Math. Res. Not. IMRN 2010(23), 4434–4497 (2010)
D. Futer, E. Kalfagianni, J.S. Purcell, On diagrammatic bounds of knot volumes and spectral invariants. Geom. Dedicata 147, 115–130 (2010). MR 2660569
D. Futer, E. Kalfagianni, J.S. Purcell, Guts of Surfaces and the Colored Jones Polynomial, vol. 2069, Lecture Notes in Mathematics (Springer, Heidelberg, 2013)
D. Futer, E. Kalfagianni, J.S. Purcell, Jones polynomials, volume and essential knot surfaces: a survey, in Knots in Poland. III. Part 1, Banach Center Publication, vol. 100. Polish Academy Science Institute of Mathematics, (Warsaw, 2014), pp. 51–77. MR 3220475
D. Futer, E. Kalfagianni, J.S. Purcell, Hyperbolic semi-adequate links. Commun. Anal. Geom. 23(5), 993–1030 (2015). MR 3458811
D. Futer, J.S. Purcell, Links with no exceptional surgeries. Comment. Math. Helv. 82(3), 629–664 (2007). MR 2314056
D. Futer, S. Schleimer, Cusp geometry of fibered 3-manifolds. Am. J. Math. 136(2), 309–356 (2014). MR 3188063
D. Gabai, R. Meyerhoff, P. Milley, Minimum volume cusped hyperbolic three-manifolds. J. Am. Math. Soc. 22(4), 1157–1215 (2009). MR 2525782
A. Giambrone, Combinatorics of link diagrams and volume. J. Knot Theory Ramif. 24(1), 1550001, 21 (2015). MR 3319678
M. Goerner, Regular tessellation links (2014). arXiv:1406.2827
F. Guéritaud, On canonical triangulations of once-punctured torus bundles and two-bridge link complements. Geom. Topol. 10, 1239–1284 (2006). With an appendix by David Futer. MR 2255497
E. Hironaka, E. Kin, A family of pseudo-Anosov braids with small dilatation. Algebr. Geom. Topol. 6, 699–738 (2006). MR 2240913
C.D. Hodgson, S.P. Kerckhoff, Universal bounds for hyperbolic Dehn surgery. Ann. Math. (2) 162(1), 367–421 (2005). MR MR2178964
C.D. Hodgson, J.H. Rubinstein, H. Segerman, Triangulations of hyperbolic 3-manifolds admitting strict angle structures. J. Topol. 5(4), 887–908 (2012). MR 3001314
C.D. Hodgson, J.H. Rubinstein, H. Segerman, S. Tillmann, Veering triangulations admit strict angle structures. Geom. Topol. 15(4), 2073–2089 (2011). MR 2860987
N.R. Hoffman, J.S. Purcell, Geometry of planar surfaces and exceptional fillings. Bull. Lond. Math. Soc. 49(2), 185–201 (2017). MR 3656288
J. Hoste, M. Thistlethwaite, J. Weeks, The first 1,701,936 knots. Math. Intell. 20(4), 33–48 (1998). MR MR1646740 (99i:57015)
J.A. Howie, Surface-alternating knots and links, Ph.D. thesis, University of Melbourne, 2015
J.A. Howie, J.S. Purcell, Geometry of alternating links on surfaces (2017). arXiv:math/1712.01373
W.H. Jaco, P.B. Shalen, Seifert fibered spaces in \(3\)-manifolds. Mem. Am. Math. Soc. 21(220), viii+192 (1979). MR MR539411 (81c:57010)
K. Johannson, Homotopy Equivalences of \(3\)-Manifolds with Boundaries, vol. 761, Lecture Notes in Mathematics (Springer, Berlin, 1979)
J. Johnson, WYSIWYG Hyperbolic knots, Low Dimensional Topology Blog. https://ldtopology.wordpress.com/2007/11/18/temporary/
J. Johnson, Y. Moriah, Bridge distance and plat projections. Algebr. Geom. Topol. 16(6), 3361–3384 (2016). MR 3584261
M. Lackenby, Word hyperbolic Dehn surgery. Invent. Math. 140(2), 243–282 (2000)
M. Lackenby, The volume of hyperbolic alternating link complements. Proc. Lond. Math. Soc. (3) 88(1), 204–224 (2004). With an appendix by Ian Agol and Dylan Thurston
M. Lackenby, J.S. Purcell, Cusp volumes of alternating knots. Geom. Topol. 20(4), 2053–2078 (2016). MR 3548463
M. Lackenby, J.S. Purcell, Essential twisted surfaces in alternating link complements. Algebr. Geom. Topol. 16(6), 3209–3270 (2016). MR 3584257
F. Luo, S. Tillmann, Angle structures and normal surfaces. Trans. Am. Math. Soc. 360(6), 2849–2866 (2008). MR 2379778
W.W. Menasco, Polyhedra representation of link complements, in Low-dimensional Topology (San Francisco, Calif., 1981), vol. 20, Contemporary Mathematics (American Mathematical Society, Providence, 1983), pp. 305–325. MR MR718149 (85e:57006)
W.W. Menasco, Menasco, closed incompressible surfaces in alternating knot and link complements. Topology 23(1), 37–44 (1984)
J. Milnor, Groups which act on \(S^n\) without fixed points. Am.. J. Math. 79, 623–630 (1957). MR 0090056
Y. Miyamoto, Volumes of hyperbolic manifolds with geodesic boundary. Topology 33(4), 613–629 (1994). MR 1293303
W.D. Neumann, D. Zagier, Volumes of hyperbolic three-manifolds. Topology 24(3), 307–332 (1985). MR 815482
M. Ozawa, Non-triviality of generalized alternating knots. J. Knot Theory Ramif. 15(3), 351–360 (2006)
M. Ozawa, Essential state surfaces for knots and links. J. Aust. Math. Soc. 91(3), 391–404 (2011)
J.S. Purcell, Cusp shapes under cone deformation. J. Differ. Geom. 80(3), 453–500 (2008). MR 2472480
J.S. Purcell, An introduction to fully augmented links, in Interactions Between Hyperbolic Geometry, Quantum Topology and Number Theory, Contemporary Mathematics (American Mathematical Society, Providence, 2011), pp. 205–220. MR 2796634
J.S. Purcell, Hyperbolic knot theory (2017). http://users.monash.edu/~jpurcell/hypknottheory.html
I. Rivin, Euclidean structures on simplicial surfaces and hyperbolic volume. Ann. Math. (2) 139(3), 553–580 (1994). MR 1283870
M. Sakuma, J. Weeks, Examples of canonical decompositions of hyperbolic link complements. Jpn. J. Math. (N.S.) 212, 393–439 (1995). MR 1364387
M. Thistlethwaite, A. Tsvietkova, An alternative approach to hyperbolic structures on link complements. Algebr. Geom. Topol. 14(3), 1307–1337 (2014). MR 3190595
W.P. Thurston, The Geometry and Topology of Three-manifolds, Princeton Univ. Math. Dept. Notes (1979). http://www.msri.org/communications/books/gt3m
W.P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. Am. Math. Soc. (N.S.) 6(3), 357–381 (1982)
W.P. Thurston, Hyperbolic structures on 3-manifolds II: surface groups and 3-manifolds which fiber over the circle (1998). arXiv:math/9801045
A. Tsvietkova, Determining isotopy classes of crossing arcs in alternating links. Asian J. Math. 22(6), 1005–1024 (2018)
J. Weeks, Computation of hyperbolic structures in knot theory, Handbook of knot theory (Elsevier B. V., Amsterdam, 2005), pp. 461–480. MR 2179268
W. Worden, Experimental statistics of veering triangulations. Exp. Math. (to appear). arXiv:1710.01198. https://doi.org/10.1080/10586458.2018.1437850
K. Yoshida, The minimal volume orientable hyperbolic 3-manifold with 4 cusps. Pac. J. Math. 266(2), 457–476 (2013). MR 3130632
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Futer, D., Kalfagianni, E., Purcell, J.S. (2019). A Survey of Hyperbolic Knot Theory. In: Adams, C., et al. Knots, Low-Dimensional Topology and Applications. KNOTS16 2016. Springer Proceedings in Mathematics & Statistics, vol 284. Springer, Cham. https://doi.org/10.1007/978-3-030-16031-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-16031-9_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-16030-2
Online ISBN: 978-3-030-16031-9
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)