Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Survey on the Turaev Genus of Knots

  • Published:
Acta Mathematica Vietnamica Aims and scope Submit manuscript

Abstract

The Turaev genus of a knot is a topological measure of how far a given knot is from being alternating. Recent work by several authors has focused attention on this interesting invariant. We discuss how the Turaev genus is related to other knot invariants, including the Jones polynomial, knot homology theories, and ribbon-graph polynomial invariants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. [Added in press] Cody Armond and Moshe Cohen recently informed us that \(q(\mathbb {G};t)\) is different for two diagrams of the knot 821. Question 1 remains open for adequate knots.

References

  1. Abe, T.: The Turaev genus of an adequate knot. Topology Appl. 156(17), 2704–2712 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abe, T., Kishimoto, K.: The dealternating number and the alternation number of a closed 3-braid. J. Knot Theory Ramifications 19(9), 1157–1181 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bollobás, B., Riordan, O.: A polynomial invariant of graphs on orientable surfaces. Proc. Lond. Math. Soc. (3) 83(3), 513–531 (2001)

    Article  MATH  Google Scholar 

  4. Bollobás, B., Riordan, O.: A polynomial of graphs on surfaces. Math. Ann. 323(1), 81–96 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Champanerkar, A., Kofman, I.: Spanning trees and Khovanov homology. Proc. Am. Math. Soc. 137(6), 2157–2167 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Champanerkar, A., Kofman, I.: Twisting quasi-alternating links. Proc. Am. Math. Soc. 137(7), 2451–2458 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Champanerkar, A., Kofman, I., Stoltzfus, N.: Graphs on surfaces and Khovanov homology. Algebr. Geom. Topol. 7, 1531–1540 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Champanerkar, A., Kofman, I., Stoltzfus, N.: Quasi-tree expansion for the Bollobás-Riordan-Tutte polynomial. Bull. Lond. Math. Soc. 43(5), 972–984 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chmutov, S.: Generalized duality for graphs on surfaces and the signed Bollobás-Riordan polynomial. J. Comb. Theory Ser. B 99(3), 617–638 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cromwell, P.R.: Knots and Links. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  11. Dasbach, O., Lowrance, A.: A Turaev surface approach to Khovanov homology. arXiv:1107.2344 [math.GT] (2011)

  12. Dasbach, O.T., Futer, D., Kalfagianni, E., Lin, X.-S., Stoltzfus, N.W.: The Jones polynomial and graphs on surfaces. J. Comb. Theory Ser. B 98(2), 384–399 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dasbach, O.T., Lowrance, A.M.: Turaev genus, knot signature, and the knot homology concordance invariants. Proc. Am. Math. Soc. 139(7), 2631–2645 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ellis-Monaghan, J.A., Moffatt, I.: Graphs on surfaces: dualities, polynomials, and knots. Springer Briefs in Mathematics. Springer, New York (2013)

    Book  Google Scholar 

  15. Futer, D., Kalfagianni, E., Purcell, J.: Guts of surfaces and the colored Jones polynomial. Lecture Notes in Mathematics, vol. 2069. Springer, Heidelberg (2013)

    Google Scholar 

  16. Hajij, M.: Turaev surface Borromean rings—REMIX. http://www.youtube.com/watch?v=j431ionQD9w

  17. Hayashi, C.: Links with alternating diagrams on closed surfaces of positive genus. Math. Proc. Cambridge Philos. Soc. 117(1), 113–128 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Huggett, S., Moffatt, I., Virdee, N.: On the Seifert graphs of a link diagram and its parallels. Math. Proc. Camb. Philos. Soc. 153(1), 123–145 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Juhász: A survey of Heegaard Floer homology. arXiv:1310.3418 [math.GT] (2013)

  20. Kauffman, L.: State models and the Jones polynomial. Topology 26(3), 395–407 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lando, S., Zvonkin, A.: Graphs on surfaces and their applications. Encyclopaedia of Mathematical Sciences, vol. 141. Springer, Heidelberg (2004)

    Book  Google Scholar 

  22. Lowrance, A.M.: Alternating distances of knots and links (2014). arXiv:1406.7039.pdf

  23. Lowrance, A.: The Khovanov width of twisted links and closed 3-braids. Comment. Math. Helv. 86(3), 675–706 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lowrance, A.M.: On knot Floer width and Turaev genus. Algebr. Geom. Topol. 8(2), 1141–1162 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Manolescu, C.: An introduction to knot Floer homology. arXiv:1401.7107 [math.GT] (2014)

  26. Manolescu, C., Ozsváth, P.: On the Khovanov and knot Floer homologies of quasi-alternating links. In: Proceedings of Gökova Geometry-Topology Conference 2007, Gökova Geometry/Topology Conference (GGT), Gökova, pp. 60–81 (2008)

  27. Moffatt, I.: Partial duals of plane graphs, separability and the graphs of knots. Algebr. Geom. Topol. 12, 1099–1136 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. Moffatt, I.: Excluded minors and the ribbon graphs of knots. arXiv:1311.2160 (2013)

  29. Murasugi, K.: Jones polynomials and classical conjectures in knot theory. Topology 26(2), 187–194 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  30. Ozawa, M.: Essential state surfaces for knots and links. J. Aust. Math. Soc. 91(3), 391–404 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. Ozsváth, P., Szabó, Z.: On the Heegaard Floer homology of branched double-covers. Adv. Math. 194 1–33 (2005)

  32. Ozsváth, P., Szabó, Z.: Heegaard Floer homology and alternating knots. Geom. Topol. 7, 225–254 (2003). (electronic)

    Article  MathSciNet  Google Scholar 

  33. Thistlethwaite, M.: A spanning tree expansion of the Jones polynomial. Topology 26(3), 297–309 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  34. Turaev, V.G.: A simple proof of the Murasugi and Kauffman theorems on alternating links. Enseign. Math. (2) 33(3–4), 203–225 (1987)

    MATH  MathSciNet  Google Scholar 

  35. Turner, P.: A spectral sequence for Khovanov homology with an application to (3; q)-torus links. Algebr. Geom. Topol. 8(2), 869–884 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. Tutte, W.: A contribution to the theory of chromatic polynomials. Can. J. Math. 6, 80–91 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  37. Watson, L.: Surgery obstructions from Khovanov homology. Sel. Math. 18(2), 417–472 (2012). (English)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the organizers of the Quantum Topology and Hyperbolic Geometry Conference (Nha Trang, Vietnam, May 13–17, 2013) for their extraordinary hospitality. We gratefully acknowledge support by the Simons Foundation and PSC-CUNY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Kofman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Champanerkar, A., Kofman, I. A Survey on the Turaev Genus of Knots. Acta Math Vietnam 39, 497–514 (2014). https://doi.org/10.1007/s40306-014-0083-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40306-014-0083-y

Keywords

Mathematics Subject Classification (2010)

Navigation