Nothing Special   »   [go: up one dir, main page]

Skip to main content

Minmax Regret 1-Sink Location Problems on Dynamic Flow Path Networks with Parametric Weights

  • Conference paper
  • First Online:
WALCOM: Algorithms and Computation (WALCOM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12635))

Included in the following conference series:

Abstract

This paper addresses the minmax regret 1-sink location problem on dynamic flow path networks with parametric weights. We are given a dynamic flow network consisting of an undirected path with positive edge lengths, positive edge capacities, and nonnegative vertex weights. A path can be considered as a road, an edge length as the distance along the road and a vertex weight as the number of people at the site. An edge capacity limits the number of people that can enter the edge per unit time. We consider the problem of locating a sink in the network, to which all the people evacuate from the vertices as quickly as possible. In our model, each weight is represented by a linear function in a common parameter t, and the decision maker who determines the location of a sink does not know the value of t. We formulate the sink location problem under such uncertainty as the minmax regret problem. Given t and a sink location x, the cost of x under t is the sum of arrival times at x for all the people determined by t. The regret for x under t is the gap between the cost of x under t and the optimal cost under t. The task of the problem is formulated as the one to find a sink location that minimizes the maximum regret over all t. For the problem, we propose an \(O(n^4 2^{\alpha (n)} \alpha (n) \log n)\) time algorithm where n is the number of vertices in the network and \(\alpha (\cdot )\) is the inverse Ackermann function. Also for the special case in which every edge has the same capacity, we show that the complexity can be reduced to \(O(n^3 2^{\alpha (n)} \alpha (n) \log n)\).

A full version of the paper is available at [13]; https://arxiv.org/abs/2011.13569.

This work is supported by JSPS KAKENHI Grant-in-Aid for Early-Career Scientists (18K18003, 20K19746), JSPS KAKENHI Grant-in-Aid for Scientific Research (B) (19H04068), and JST CREST (JPMJCR1402).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal, P.K., Sharir, M., Shor, P.: Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences. J. Comb. Theory Ser. A 52(2), 228–274 (1989)

    Google Scholar 

  2. Alstrup, S., Gavoille, C., Kaplan, H., Rauhe, T.: Nearest common ancestors: a survey and a new distributed algorithm. In: Proceedings of the 14th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA 2002), pp. 258–264 (2002)

    Google Scholar 

  3. Arumugam, G.P., Augustine, J., Golin, M.J., Srikanthan, P.: Minmax regret \(k\)-sink location on a dynamic path network with uniform capacities. Algorithmica 81(9), 3534–3585 (2019)

    Article  MathSciNet  Google Scholar 

  4. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000). https://doi.org/10.1007/10719839_9

    Chapter  Google Scholar 

  5. Benkoczi, R., Bhattacharya, B., Higashikawa, Y., Kameda, T., Katoh, N.: Minsum k-sink problem on dynamic flow path networks. In: Iliopoulos, C., Leong, H.W., Sung, W.-K. (eds.) IWOCA 2018. LNCS, vol. 10979, pp. 78–89. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94667-2_7

    Chapter  Google Scholar 

  6. Benkoczi, R., Bhattacharya, B., Higashikawa, Y., Kameda, T., Katoh, N.: Minsum \(k\)-sink problem on path networks. Theor. Comput. Sci. 806, 388–401 (2020)

    Article  MathSciNet  Google Scholar 

  7. Bhattacharya, B., Golin, M.J., Higashikawa, Y., Kameda, T., Katoh, N.: Improved algorithms for computing k-sink on dynamic flow path networks. In: Ellen, F., Kolokolova, A., Sack, J.R. (eds.) WADS 2017. LNCS, vol. 10389, pp. 133–144. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62127-2_12

    Chapter  MATH  Google Scholar 

  8. Bhattacharya, B., Higashikawa, Y., Kameda, T., Katoh, N.: An \({O}(n^2 \log ^2 n)\) time algorithm for minmax regret minsum sink on path networks. In: Proceedings of the 29th International Symposium on Algorithms and Computation 2018 (2018)

    Google Scholar 

  9. Bhattacharya, B., Kameda, T.: Improved algorithms for computing minmax regret sinks on dynamic path and tree networks. Theor. Comput. Sci. 607, 411–425 (2015)

    Article  MathSciNet  Google Scholar 

  10. Chen, D., Golin, M.J.: Sink evacuation on trees with dynamic confluent flows. In: 27th International Symposium on Algorithms and Computation (2016)

    Google Scholar 

  11. Chen, D., Golin, M.J.: Minmax centered k-partitioning of trees and applications to sink evacuation with dynamic confluent flows. CoRR abs/1803.09289 (2018)

    Google Scholar 

  12. Ford, L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static flows. Oper. Res. 6(3), 419–433 (1958)

    Article  MathSciNet  Google Scholar 

  13. Fujie, T., Higashikawa, Y., Katoh, N., Teruyama, J., Tokuni, Y.: Minmax regret 1-sink location problems on dynamic flow path networks with parametric weights. CoRR abs/2011.13569 (2020)

    Google Scholar 

  14. Golin, M.J., Sandeep, S.: Minmax-regret \(k\)-sink location on a dynamic tree network with uniform capacities. CoRR abs/1806.03814 (2018)

    Google Scholar 

  15. Hart, S., Sharir, M.: Nonlinearity of Davenport-Schinzel sequences and of generalized path compression schemes. Combinatorica 6(2), 151–177 (1986)

    Article  MathSciNet  Google Scholar 

  16. Hershberger, J.: Finding the upper envelope of \(n\) line segments in \({O}(n \log n)\) time. Inf. Process. Lett. 33(4), 169–174 (1989)

    Article  MathSciNet  Google Scholar 

  17. Higashikawa, Y.: Studies on the space exploration and the sink location under incomplete information towards applications to evacuation planning. Ph.D. thesis, Kyoto University, Japan (2014)

    Google Scholar 

  18. Higashikawa, Y., et al.: Minimax regret 1-sink location problem in dynamic path networks. Theor. Comput. Sci. 588, 24–36 (2015)

    Article  MathSciNet  Google Scholar 

  19. Higashikawa, Y., Cheng, S.W., Kameda, T., Katoh, N., Saburi, S.: Minimax regret 1-median problem in dynamic path networks. Theory Comput. Syst. 62(6), 1392–1408 (2018)

    Article  MathSciNet  Google Scholar 

  20. Higashikawa, Y., Golin, M.J., Katoh, N.: Minimax regret sink location problem in dynamic tree networks with uniform capacity. J. Graph Algorithms Appl. 18(4), 539–555 (2014)

    Article  MathSciNet  Google Scholar 

  21. Higashikawa, Y., Golin, M.J., Katoh, N.: Multiple sink location problems in dynamic path networks. Theor. Comput. Sci. 607, 2–15 (2015)

    Article  MathSciNet  Google Scholar 

  22. Hoppe, B., Tardos, E.: The quickest transshipment problem. Math. Oper. Res. 25(1), 36–62 (2000)

    Article  MathSciNet  Google Scholar 

  23. Kouvelis, P., Yu, G.: Robust Discrete Optimization and its Applications. Kluwer Academic Publishers, London (1997)

    Book  Google Scholar 

  24. Li, H., Xu, Y.: Minimax regret 1-sink location problem with accessibility in dynamic general networks. Eur. J. Oper. Res. 250(2), 360–366 (2016)

    Article  MathSciNet  Google Scholar 

  25. Li, H., Xu, Y., Ni, G.: Minimax regret vertex 2-sink location problem in dynamic path networks. J. Comb. Optim. 31(1), 79–94 (2014). https://doi.org/10.1007/s10878-014-9716-2

    Article  MathSciNet  MATH  Google Scholar 

  26. Mamada, S., Uno, T., Makino, K., Fujishige, S.: An \({O}(n \log ^2 n)\) algorithm for a sink location problem in dynamic tree networks. Discret. Appl. Math. 154, 2387–2401 (2006)

    Article  Google Scholar 

  27. Skutella, M.: An introduction to network flows over time. In: Cook, W., Lovász, L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 451–482. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-76796-1_21

    Chapter  Google Scholar 

  28. Vairaktarakis, G.L., Kouvelis, P.: Incorporation dynamic aspects and uncertainty in 1-median location problems. Nav. Res. Logist. (NRL) 46(2), 147–168 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuya Higashikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fujie, T., Higashikawa, Y., Katoh, N., Teruyama, J., Tokuni, Y. (2021). Minmax Regret 1-Sink Location Problems on Dynamic Flow Path Networks with Parametric Weights. In: Uehara, R., Hong, SH., Nandy, S.C. (eds) WALCOM: Algorithms and Computation. WALCOM 2021. Lecture Notes in Computer Science(), vol 12635. Springer, Cham. https://doi.org/10.1007/978-3-030-68211-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68211-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68210-1

  • Online ISBN: 978-3-030-68211-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics