Nothing Special   »   [go: up one dir, main page]

Skip to main content

Improved Algorithms for Computing k-Sink on Dynamic Flow Path Networks

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10389))

Included in the following conference series:

  • 1594 Accesses

Abstract

We address the problem of locating k sinks on dynamic flow path networks with n vertices in such a way that the evacuation completion time to them is minimized. Our two algorithms run in \(O(n\log n + k^2\log ^4 n)\) and \(O(n\log ^3 n)\) time, respectively. When all edges have the same capacity, we also present two algorithms which run in \(O(n + k^2\log ^2n)\) time and \(O(n\log n)\) time, respectively. These algorithms together improve upon the previously most efficient algorithms, which have time complexities \(O(kn\log ^2n)\) [1] and O(kn) [11], in the general and uniform edge capacity cases, respectively. The above results are achieved by organizing relevant data for subpaths in a strategic way during preprocessing, and the final results are obtained by extracting/merging them in an efficient manner.

B. Bhattacharya — Partially supported by a Discovery Grant from NSERC of Canada

M.J. Golin — Partially supported by Hong Kong RGC GRF grant 16208415

Y. Higashikawa and N. Katoh — Supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (B) (17K12641)

Y. Higashikawa — Supported by JST CREST (JPMJCR1402)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arumugam, G.P., Augustine, J., Golin, M.J., Srikanthan, P.: A polynomial time algorithm for minimax-regret evacuation on a dynamic path (2014). arXiv:1404,5448v1

  2. Benkoczi, R., Bhattacharya, B., Chrobak, M., Larmore, L.L., Rytter, W.: Faster algorithms for k-medians in trees. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 218–227. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45138-9_16

    Chapter  Google Scholar 

  3. Bhattacharya, B., Kameda, T.: Improved algorithms for computing minmax regret sinks on path and tree networks. Theoretical Computer Science 607, 411–425 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheng, S.-W., Higashikawa, Y., Katoh, N., Ni, G., Su, B., Xu, Y.: Minimax regret 1-sink location problems in dynamic path networks. In: Chan, T.-H.H., Lau, L.C., Trevisan, L. (eds.) TAMC 2013. LNCS, vol. 7876, pp. 121–132. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38236-9_12

    Chapter  Google Scholar 

  5. Ford, L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static flows. Operations research 6(3), 419–433 (1958)

    Article  MathSciNet  Google Scholar 

  6. Frederickson, G.N.: Optimal algorithms for tree partitioning. In: Proc. 2nd ACM-SIAM Symp. Discrete Algorithms, pp. 168–177 (1991)

    Google Scholar 

  7. Frederickson, G.N., Johnson, D.B.: Finding \(k\)th paths and \(p\)-centers by generating and searching good data structures. J. Algorithms 4, 61–80 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hamacher, H.W., Tjandra, S.A.: Mathematical modeling of evacuation problems: a state of the art. In: Pedestrian and Evacuation Dynamics, pp. 227–266. Springer Verlag (2002)

    Google Scholar 

  9. Higashikawa, Y.: Studies on the space exploration and the sink location under incomplete information towards applications to evacuation planning. PhD thesis, Kyoto University, Japan (2014)

    Google Scholar 

  10. Higashikawa, Y., Golin, M.J., Katoh, N.: Minimax regret sink location problem in dynamic tree networks with uniform capacity. J. of Graph Algorithms and Applications 18(4), 539–555 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Higashikawa, Y., Golin, M. J., Katoh, N.: Multiple sink location problems in dynamic path networks. Theoretical Computer Science 607, 2–15 (2015)

    Google Scholar 

  12. Hoppe, B., Tardos, É.: The quickest transshipment problem. Mathematics of Operations Research 25(1), 36–62 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kamiyama, N., Katoh, N., Takizawa, A.: An efficient algorithm for evacuation problem in dynamic network flows with uniform arc capacity. IEICE Transactions 89-D(8), 2372–2379 (2006)

    Google Scholar 

  14. Mamada, S., Makino, K., Fujishige, S.: Optimal sink location problem for dynamic flows in a tree network. IEICE Trans. Fundamentals E85-A, 1020–1025 (2002)

    Google Scholar 

  15. Mamada, S., Uno, T., Makino, K., Fujishige, S.: An \({O}(n\log ^2 n)\) algorithm for a sink location problem in dynamic tree networks. Discrete Applied Mathematics 154, 2387–2401 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Megiddo, N.: Combinatorial optimization with rational objective functions. Math. Oper. Res. 4, 414–424 (1979)

    Google Scholar 

  17. Megiddo, N., Tamir, A.: New results on the complexity of \(p\)-center problems. SIAM J. Comput. 12, 751–758 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Skutella, M.: An introduction to network flows over time. In: Research Trends in Combinatorial Optimization, pp. 451–482. Springer (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuya Higashikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bhattacharya, B., Golin, M.J., Higashikawa, Y., Kameda, T., Katoh, N. (2017). Improved Algorithms for Computing k-Sink on Dynamic Flow Path Networks. In: Ellen, F., Kolokolova, A., Sack, JR. (eds) Algorithms and Data Structures. WADS 2017. Lecture Notes in Computer Science(), vol 10389. Springer, Cham. https://doi.org/10.1007/978-3-319-62127-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62127-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62126-5

  • Online ISBN: 978-3-319-62127-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics