Abstract
The double orthogonal projection of the 4-space onto two mutually perpendicular 3-spaces is a method of visualization of four-dimensional objects in a three-dimensional space. We present an interactive animation of the stereographic projection of a hyperspherical hexahedron on a 3-sphere embedded in the 4-space. Described are synthetic constructions of stereographic images of a point, hyperspherical tetrahedron, and 2-sphere on a 3-sphere from their double orthogonal projections. Consequently, the double-orthogonal projection of a freehand curve on a 3-sphere is created inversely from its stereographic image. Furthermore, we show an application to a synthetic construction of a spherical inversion and visualizations of double orthogonal projections and stereographic images of Hopf tori on a 3-sphere generated from Clelia curves on a 2-sphere.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The faces are not depicted due to insufficient possibilities of the surface parametrization in GeoGebra, but the reader can turn on the visibility of the corresponding spheres in the stereographic projection in the online model.
- 2.
This choice reflects the possibility of a definition of the Hopf fibration in the complex number plane, and so the common plane \(\pi (x,z)\) corresponds to the real parts of coordinates \((x+\i y, z+\i w)\) of points.
References
Bianchi-Pinkall Flat Tori. http://virtualmathmuseum.org/Surface/bianchi-pinkall_tori/bianchi-pinkall_tori.html
4D Geometry (2019). https://sirius14000.wixsite.com/desmos/4d-geometry
Alvarez, A., Ghys, E., Leys, J.: Dimensions Chapter 7 and 8. http://www.dimensions-math.org/
Arroyo Ohori, K., Ledoux, H., Stoter, J.: Visualising higher-dimensional space-time and space-scale objects as projections to R3. PeerJ Compu. Sci. 3, e123 (2017). https://doi.org/10.7717/peerj-cs.123. https://peerj.com/articles/cs-123
Balmens, G.: Stereographic Projection of a 4D Clifford Torus (2012). http://demonstrations.wolfram.com/StereographicProjectionOfA4DCliffordTorus/
Banchoff, T.F.: Geometry of Hopf Mapping and Pinkall’s Tori of Given Conformal Type. Comput. Algebra 57–62 (1988)
Banchoff, T.F.: Beyond the third dimension: geometry, computer graphics, and higher dimensions. Scientific American Library (1996)
Cervone, D.P.: Some Notes on the Fourth Dimension (2003). http://www.math.union.edu/~dpvc/math/4D/
Chinyere, I.: Computer simulation of the modular fibration. Ph.D. thesis, Stellenbosch University (2012)
Eater, B., Sanderson, G.: Visualizing quaternions. https://eater.net/quaternions
Goemans, W., Van de Woestyne, I.: Clelia curves, twisted surfaces and Plücker’s conoid in Euclidean and Minkowski 3-space. In: Suceavă, B.D., Carriazo, A., Oh, Y.M., Van der Veken, J. (eds.) Recent Advances in the Geometry of Submanifolds: Dedicated to the Memory of Franki Dillen (1963–2013), pp. 59–73. American Mathematical Society, Providance, Rhode Island (2016). https://doi.org/10.1090/conm/674/13550
Hart, V., Segerman, H.: The quaternion group as a symmetry group. Best Writing Math. 2015, 141–153 (2014). https://doi.org/10.2307/j.ctvc778jw.17
Johnson, N.: Niles Johnson: Hopf Fibration Video. https://nilesjohnson.net/hopf.html
Koçak, H., Laidlaw, D.: Computer graphics and the geometry of S3. Math. Intelligencer 9(1), 8–10 (1987). https://doi.org/10.1007/BF03023567
Odehnal, B., Stachel, H., Glaeser, G.: The Universe of Quadrics. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-662-61053-4
Pasha Hosseinbor, A., et al.: 4D hyperspherical harmonic (HyperSPHARM) representation of surface anatomy: a holistic treatment of multiple disconnected anatomical structures. Med. Image Anal. 22(1), 89–101 (2015). https://doi.org/10.1016/j.media.2015.02.004
Pinkall, U.: Hopf tori in S3. Inventiones Mathematicae 81(2), 379–386 (1985). https://doi.org/10.1007/BF01389060
Saint-Exupéry, A.: The Little Prince. Reynal and Hitchcock, New York (1943)
Schleimer, S., Segerman, H.: T in S 3. Simulation, p. 620 (2012)
Snyder, J.P.: Map Projections—A Working Manual. Technical report, Washington, D.C. (1987). https://doi.org/10.3133/pp1395
Zamboj, M.: 4D Stereographic Projection, GeoGebra Book. https://www.geogebra.org/m/zqkhdsmd
Zamboj, M.: Double orthogonal projection of four-dimensional objects onto Two perpendicular three-dimensional spaces. Nexus Netw. J. 20(1), 267–281 (2018). https://doi.org/10.1007/s00004-017-0368-2
Zamboj, M.: Sections and shadows of four-dimensional objects. Nexus Netw. J. 20(2), 475–487 (2018). https://doi.org/10.1007/s00004-018-0384-x
Zamboj, M.: 1-2-3-sphere in the 4-Space. In: Proceedings of Slovak-Czech Conference on Geometry and Graphics 2019, pp. 217–222. Vydavatelský servis, Plzeň (2019)
Zamboj, M.: Quadric sections of four-dimensional cones. In: Cocchiarella, L. (eds.) Advances in Intelligent Systems and Computing, vol. 809, pp. 500–513. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-95588-9_41
Zamboj, M.: Synthetic construction of the Hopf fibration in the double orthogonal projection of the 4-space (2020). http://arxiv.org/abs/2003.09236
Zamboj, M.: Visualizing objects of four-dimensional space: From Flatland to the Hopf fibration. In: 19th Conference on Applied Mathematics, APLIMAT 2020 Proceedings, pp. 1140–1164. Slovak University of Technology in Bratislava (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zamboj, M. (2021). Interactive 4-D Visualization of Stereographic Images from the Double Orthogonal Projection. In: Cheng, LY. (eds) ICGG 2020 - Proceedings of the 19th International Conference on Geometry and Graphics. ICGG 2021. Advances in Intelligent Systems and Computing, vol 1296. Springer, Cham. https://doi.org/10.1007/978-3-030-63403-2_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-63403-2_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63402-5
Online ISBN: 978-3-030-63403-2
eBook Packages: EngineeringEngineering (R0)