Nothing Special   »   [go: up one dir, main page]

Skip to main content

Interactive 4-D Visualization of Stereographic Images from the Double Orthogonal Projection

  • Conference paper
  • First Online:
ICGG 2020 - Proceedings of the 19th International Conference on Geometry and Graphics (ICGG 2021)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1296))

Included in the following conference series:

Abstract

The double orthogonal projection of the 4-space onto two mutually perpendicular 3-spaces is a method of visualization of four-dimensional objects in a three-dimensional space. We present an interactive animation of the stereographic projection of a hyperspherical hexahedron on a 3-sphere embedded in the 4-space. Described are synthetic constructions of stereographic images of a point, hyperspherical tetrahedron, and 2-sphere on a 3-sphere from their double orthogonal projections. Consequently, the double-orthogonal projection of a freehand curve on a 3-sphere is created inversely from its stereographic image. Furthermore, we show an application to a synthetic construction of a spherical inversion and visualizations of double orthogonal projections and stereographic images of Hopf tori on a 3-sphere generated from Clelia curves on a 2-sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The faces are not depicted due to insufficient possibilities of the surface parametrization in GeoGebra, but the reader can turn on the visibility of the corresponding spheres in the stereographic projection in the online model.

  2. 2.

    This choice reflects the possibility of a definition of the Hopf fibration in the complex number plane, and so the common plane \(\pi (x,z)\) corresponds to the real parts of coordinates \((x+\i y, z+\i w)\) of points.

References

  1. Bianchi-Pinkall Flat Tori. http://virtualmathmuseum.org/Surface/bianchi-pinkall_tori/bianchi-pinkall_tori.html

  2. 4D Geometry (2019). https://sirius14000.wixsite.com/desmos/4d-geometry

  3. Alvarez, A., Ghys, E., Leys, J.: Dimensions Chapter 7 and 8. http://www.dimensions-math.org/

  4. Arroyo Ohori, K., Ledoux, H., Stoter, J.: Visualising higher-dimensional space-time and space-scale objects as projections to R3. PeerJ Compu. Sci. 3, e123 (2017). https://doi.org/10.7717/peerj-cs.123. https://peerj.com/articles/cs-123

  5. Balmens, G.: Stereographic Projection of a 4D Clifford Torus (2012). http://demonstrations.wolfram.com/StereographicProjectionOfA4DCliffordTorus/

  6. Banchoff, T.F.: Geometry of Hopf Mapping and Pinkall’s Tori of Given Conformal Type. Comput. Algebra 57–62 (1988)

    Google Scholar 

  7. Banchoff, T.F.: Beyond the third dimension: geometry, computer graphics, and higher dimensions. Scientific American Library (1996)

    Google Scholar 

  8. Cervone, D.P.: Some Notes on the Fourth Dimension (2003). http://www.math.union.edu/~dpvc/math/4D/

  9. Chinyere, I.: Computer simulation of the modular fibration. Ph.D. thesis, Stellenbosch University (2012)

    Google Scholar 

  10. Eater, B., Sanderson, G.: Visualizing quaternions. https://eater.net/quaternions

  11. Goemans, W., Van de Woestyne, I.: Clelia curves, twisted surfaces and Plücker’s conoid in Euclidean and Minkowski 3-space. In: Suceavă, B.D., Carriazo, A., Oh, Y.M., Van der Veken, J. (eds.) Recent Advances in the Geometry of Submanifolds: Dedicated to the Memory of Franki Dillen (1963–2013), pp. 59–73. American Mathematical Society, Providance, Rhode Island (2016). https://doi.org/10.1090/conm/674/13550

  12. Hart, V., Segerman, H.: The quaternion group as a symmetry group. Best Writing Math. 2015, 141–153 (2014). https://doi.org/10.2307/j.ctvc778jw.17

    Article  Google Scholar 

  13. Johnson, N.: Niles Johnson: Hopf Fibration Video. https://nilesjohnson.net/hopf.html

  14. Koçak, H., Laidlaw, D.: Computer graphics and the geometry of S3. Math. Intelligencer 9(1), 8–10 (1987). https://doi.org/10.1007/BF03023567

    Article  MathSciNet  MATH  Google Scholar 

  15. Odehnal, B., Stachel, H., Glaeser, G.: The Universe of Quadrics. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-662-61053-4

  16. Pasha Hosseinbor, A., et al.: 4D hyperspherical harmonic (HyperSPHARM) representation of surface anatomy: a holistic treatment of multiple disconnected anatomical structures. Med. Image Anal. 22(1), 89–101 (2015). https://doi.org/10.1016/j.media.2015.02.004

    Article  Google Scholar 

  17. Pinkall, U.: Hopf tori in S3. Inventiones Mathematicae 81(2), 379–386 (1985). https://doi.org/10.1007/BF01389060

    Article  MathSciNet  MATH  Google Scholar 

  18. Saint-Exupéry, A.: The Little Prince. Reynal and Hitchcock, New York (1943)

    Google Scholar 

  19. Schleimer, S., Segerman, H.: T in S 3. Simulation, p. 620 (2012)

    Google Scholar 

  20. Snyder, J.P.: Map Projections—A Working Manual. Technical report, Washington, D.C. (1987). https://doi.org/10.3133/pp1395

  21. Zamboj, M.: 4D Stereographic Projection, GeoGebra Book. https://www.geogebra.org/m/zqkhdsmd

  22. Zamboj, M.: Double orthogonal projection of four-dimensional objects onto Two perpendicular three-dimensional spaces. Nexus Netw. J. 20(1), 267–281 (2018). https://doi.org/10.1007/s00004-017-0368-2

    Article  MATH  Google Scholar 

  23. Zamboj, M.: Sections and shadows of four-dimensional objects. Nexus Netw. J. 20(2), 475–487 (2018). https://doi.org/10.1007/s00004-018-0384-x

    Article  MathSciNet  MATH  Google Scholar 

  24. Zamboj, M.: 1-2-3-sphere in the 4-Space. In: Proceedings of Slovak-Czech Conference on Geometry and Graphics 2019, pp. 217–222. Vydavatelský servis, Plzeň (2019)

    Google Scholar 

  25. Zamboj, M.: Quadric sections of four-dimensional cones. In: Cocchiarella, L. (eds.) Advances in Intelligent Systems and Computing, vol. 809, pp. 500–513. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-95588-9_41

  26. Zamboj, M.: Synthetic construction of the Hopf fibration in the double orthogonal projection of the 4-space (2020). http://arxiv.org/abs/2003.09236

  27. Zamboj, M.: Visualizing objects of four-dimensional space: From Flatland to the Hopf fibration. In: 19th Conference on Applied Mathematics, APLIMAT 2020 Proceedings, pp. 1140–1164. Slovak University of Technology in Bratislava (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Zamboj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zamboj, M. (2021). Interactive 4-D Visualization of Stereographic Images from the Double Orthogonal Projection. In: Cheng, LY. (eds) ICGG 2020 - Proceedings of the 19th International Conference on Geometry and Graphics. ICGG 2021. Advances in Intelligent Systems and Computing, vol 1296. Springer, Cham. https://doi.org/10.1007/978-3-030-63403-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63403-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63402-5

  • Online ISBN: 978-3-030-63403-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics