Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Hopf tori inS 3

  • Published:
Inventiones mathematicae Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bryant, R.L.: A duality theorem for Willmore surfaces. (Preprint 1984)

  2. Garsia, A.M.: On the conformal types of algebraic surfaces of euclidean space. Comment. Math. Helv.37, 49–60 (1962)

    Google Scholar 

  3. Langer, J., Singer, D.A.: Curve straightening in Riemannian manifolds (In prep.)

  4. Lawson, H.B.: Complete minimal surfaces inS 3. Ann. Math.92, 335–374 (1970)

    Google Scholar 

  5. Palais, R.S.: The principle of symmetric criticality. Commun. Math. Phys.69, 19–30 (1979)

    Google Scholar 

  6. Rüedy, R.: Embeddings of open Riemann Surfaces. Comment. Math. Helv.46, 214–225 (1971)

    Google Scholar 

  7. Santalo, L.A.: Integral geometry and geometric probability. London: Addison-Wesley 1976

    Google Scholar 

  8. Singer, I.M., Thorpe, J.A.: Lecture notes on elementary topology and geometry. Glenview 1967

  9. Weiner, J.L.: On a problem of Chen, Willmore, et al. Indiana Univ. Math. J.27, 19–35 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinkall, U. Hopf tori inS 3 . Invent Math 81, 379–386 (1985). https://doi.org/10.1007/BF01389060

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01389060

Navigation