Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Accurate and Fast Computation of Exponent Fourier Moment

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Exponent Fourier moments (EFMs) are suitable for image representation and invariant pattern recognition. EFMs posses more number of uniformly distributed zeros as compared to Zernike Moments. However, these moments tend to be unstable near the center of image and also show a rise in reconstruction error for higher order of moments. In this paper, we propose a new computational framework for calculating the traditional EFM by partitioning the radial and angular part into equally spaced sectors. The proposed approach is simple and results in better image representation capability, numerical stability, and computational speed. Moreover, the proposed approach is completely stable near the center of image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inform. Theory 8(2), 179–187 (1962)

    Article  MATH  Google Scholar 

  2. Teh, C.-H.; Chin, R.T.: On image analysis by the methods of moments. IEEE Trans. Pattern Anal. Mach. Intell. 10(4), 496–513 (1988)

    Article  MATH  Google Scholar 

  3. Abu-Mostafa, Y.S.; Psaltis, D.: Image normalization by complex moments. IEEE Trans. Pattern Anal. Mach. Intell. 1, 46–55 (1985)

    Article  Google Scholar 

  4. Teague, Michael Reed: Image analysis via the general theory of moments. JOSA 70(8), 920–930 (1980)

    Article  MathSciNet  Google Scholar 

  5. Khotanzad, A.; Hong, Y.H.: Invariant image recognition by Zernike moments. IEEE Trans. Pattern Anal. Mach. Intell. 12(5), 489–497 (1990)

    Article  Google Scholar 

  6. Belkasim, S.O.; Shridhar, M.; Ahmadi, M.: Pattern recognition with moment invariants: a comparative study and new results. Pattern Recogn. 24(12), 1117–1138 (1991)

    Article  Google Scholar 

  7. Liao, S.X.; Pawlak, M.: On image analysis by moments. IEEE Trans. Pattern Anal. Mach. Intell. 18(3), 254–266 (1996)

    Article  Google Scholar 

  8. Mukundan, R.; Ong, S.H.; Lee, P.A.: Image analysis by Tchebichef moments. IEEE Trans. Image Process. 10(9), 1357–1364 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yap, P.-T.; Paramesran, R.; Ong, S.-H.: Image analysis by Krawtchouk moments. IEEE Trans. Image Process. 12(11), 1367–1377 (2003)

    Article  MathSciNet  Google Scholar 

  10. Zhu, H.; et al.: Image analysis by discrete orthogonal Racah moments. Signal Process. 87(4), 687–708 (2007)

    Article  MATH  Google Scholar 

  11. Zhu, Hongqing; et al.: Image analysis by discrete orthogonal dual Hahn moments. Pattern Recogn. Lett. 28(13), 1688–1704 (2007)

    Article  Google Scholar 

  12. Singh, S.P.; Urooj, S.: An improved CAD system for breast cancer diagnosis based on generalized pseudo-Zernike moment and Ada-DEWNN classifier. J. Med. Syst. 40(4), 1–13 (2016)

  13. Ren, H.; et al.: Multidistortion-invariant image recognition with radial harmonic Fourier moments. JOSA A 20(4), 631–637 (2003)

    Article  MathSciNet  Google Scholar 

  14. Yap, P.-T.; Jiang, X.; Kot, A.C.: Two-dimensional polar harmonic transforms for invariant image representation. IEEE Trans. Pattern Anal. Mach. Intell. 32(7), 1259–1270 (2010)

    Article  Google Scholar 

  15. Singh, S.P.; Urooj, S.: Combined rotation-and scale-invariant texture analysis using radon-based polar complex exponential transform. Arab. J. Sci. Eng. 40(8), 2309–2322 (2015)

    Article  Google Scholar 

  16. Singh, S.P.; Urooj, S.; Lay-Ekuakille, A.: Breast cancer detection using PCPCET and ADEWNN: a geometric invariant approach to medical X-ray image sensors. IEEE Sens. J. 16(12), 4847–4855 (2016)

    Article  Google Scholar 

  17. Hu, H.-T.; et al.: Orthogonal moments based on exponent functions: exponent-Fourier moments. Pattern Recogn. 47(8), 2596–2606 (2014)

    Article  MATH  Google Scholar 

  18. Xiao, B.; Li, W.-S.; Wang, G.-Y.: Errata and comments on “Orthogonal moments based on exponent functions: exponent-Fourier moments”. Pattern Recogn. 48(4), 1571–1573 (2015)

    Article  Google Scholar 

  19. Hu, H.-T.; Quan, J.; Shao, C.: Errata and comments on “Errata and comments on orthogonal moments based on exponent functions: exponent-Fourier moments”. Pattern Recogn. 52, 471–476 (2016)

    Article  Google Scholar 

  20. Ping, Z.; et al.: FFT algorithm of complex exponent moments and its application in image recognition. In: Sixth International Conference on Digital Image Processing. International Society for Optics and Photonics (2014)

  21. An, S.Y.; Lee, L.K.; Oh, S.Y.: Modified angular radial partitioning for edge image description in image retrieval. Electron. Lett. 48(10), 563–565 (2012)

    Article  Google Scholar 

  22. Singh, S.P.; Urooj, S.: Three types of moment invariants for color object recognition based on radon and polar harmonic transform in \(\text{C}\ell \) (0, 2) space. Arab. J. Sci. Eng. 41(8), 3051–3060 (2016). doi:10.1007/s13369-016-2080-z

  23. Dabbaghchian, S.; Ghaemmaghami, M.P.; Aghagolzadeh, A.: Feature extraction using discrete cosine transform and discrimination power analysis with a face recognition technology. Pattern Recogn. 43(4), 1431–1440 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya P Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.P., Urooj, S. Accurate and Fast Computation of Exponent Fourier Moment. Arab J Sci Eng 42, 3299–3306 (2017). https://doi.org/10.1007/s13369-017-2465-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2465-7

Keywords

Navigation