Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

New set of fractional-order generalized Laguerre moment invariants for pattern recognition

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This article presents a new series of invariant moments, called Fractional-order Generalized Laguerre Moment Invariants (FGLMI), based on Fractional-order Generalized Laguerre polynomials (FGLPs). To begin, we provide the relations and the properties necessary to define the fractional-order generalized Laguerre moments. Then, we present the theoretical framework to derive invariants from fractional-order moments with respect to the change in orientation, size and position based on the algebraic relationships between FGLM and fractional-order geometric moments. In addition, a fast and precise algorithm has been proposed for the calculation of FGLM in order to speed up the calculation time and ensure the numerical stability of the invariant moments. Numerical experiments are carried out to demonstrate the efficiency of FGLM and their proposed invariants compared to existing methods, with regard to the reconstruction of 2D and 3D images, the computation time, the global entity extraction capacity and image localization, invariability property and 2D / 3D image classification performance on different 2D and 3D image databases. The theoretical and experimental results presented clearly show the efficiency of the descriptors proposed for the representation and classification of 2D and 3D images by other types of orthogonal moments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

GLM:

Generalized Laguerre Moments

FGLPs:

Fractional-order Generalized Laguerre Polynomials

FGLM:

Fractional-order Generalized Laguerre Moments

FGGMI:

Fractional-order Generalized Geometric Moment Invariants

FGGM:

Fractional-order Generalized Geometric Moment

FGLMI:

Fractional-order Generalized Laguerre Moment Invariants

RST:

Rotation, Scaling and Translation

ROI:

Region Of Interest

FDE:

Fractional Differential Equations

GegMI:

Gegenbauer Moment Invariants

GMI:

Geometric Moment Invariants

GHMI:

Gauss-Hermite Moment Invariants

JMI:

Jacobi Moment Invariants

CMI:

Chebychev Moment Invariants

ZOA-FGLM:

Zeroth Order Approximation of the Fractional-order Generalized Laguerre Moments

FA-FGLM:

Fast and Accurate computation of the Fractional-order Generalized Laguerre Moments

References

  1. Asli BHS, Flusser J et al (2014) Fast computation of Krawtchouk moments. Inf Sci 288:73–86

    Article  Google Scholar 

  2. Benouini R, Batioua I, Zenkouar K, Zahi A, Najah S, Qjidaa H et al (2019) Fractional-order orthogonal Chebyshev moments and moment invariants for image representation and pattern recognition. Pattern Recogn 86:332–343

    Article  Google Scholar 

  3. Bhrawy A, Alhamed Y, Baleanu D, Al-Zahrani A et al (2014) New spectral techniques for systems of fractional differential equations using fractional-order generalized Laguerre orthogonal functions. Fract Calc Appl Anal 17(4):1137–1157

  4. Bhrawy AH, Zaky MA et al (2016) Shifted fractional-order Jacobi orthogonal functions: application to a system of fractional differential equations. Appl Math Model 40(2):832–845

  5. Bhrawy A, Zaky M et al (2016) A fractional-order Jacobi tau method for a class of time-fractional PDEs with variable coefficients. Math Methods Appl Sci 39(7):1765–1779

  6. Bolourchi P, Demirel H, Uysal S et al (2017) Target recognition in SAR images using radial Chebyshev moments. Signal Image Video Process 11(6):1033–1040

  7. Camacho-Bello C, Toxqui-Quitl C, Padilla-Vivanco A, Báez-Rojas JJ et al (2014) High-precision and fast computation of Jacobi–Fourier moments for image description. JOSA A 31(1):124–134

  8. Chen B, Yu M, Su Q, Shim HJ, Shi Y-Q et al (2018) Fractional quaternion Zernike moments for robust color image copy-move forgery detection. IEEE Access 6:56637–56646

    Article  Google Scholar 

  9. Chen Y et al (2019) Multiscale fast correlation filtering tracking algorithm based on a feature fusion model. Concurr Comput Pract Exp, Oct. https://doi.org/10.1002/cpe.5533

  10. Chen Y, Wang J, Xia R, Zhang Q, Cao Z, Yang K et al (2019) The visual object tracking algorithm research based on adaptive combination kernel. J Ambient Intell Humaniz Comput 10(12):4855–4867

  11. Chen B, Yu M, Su Q, Li L et al (2019) Fractional quaternion cosine transform and its application in color image copy-move forgery detection. Multimed Tools Appl 78(7):8057–8073

  12. El Ogri O, Daoui A, Yamni M, Karmouni H, Sayyouri M, Qjidaa H et al (2019) 2D and 3D Medical Image Analysis by Discrete Orthogonal Moments. Procedia Comput. Sci 148:428–437

    Article  Google Scholar 

  13. ETH Zurich - Computer Vision Laboratory. http://www.vision.ee.ethz.ch/datasets/index.en.html. (consulté le avr. 16, 2020).

  14. D.-P. Fan et al., 2019, « Rethinking RGB-D salient object detection: Models, datasets, and large-scale benchmarks », ArXiv Prepr. ArXiv190706781, .

  15. Fathi A, Alirezazadeh P, Abdali-Mohammadi F et al (2016) A new global-Gabor-Zernike feature descriptor and its application to face recognition. J Vis Commun Image Represent 38:65–72

    Article  Google Scholar 

  16. Flusser J, Suk T, Zitová B et al (2016) 2D and 3D image analysis by moments. Wiley

  17. Hmimid A, Sayyouri M, Qjidaa H et al (2014) Image classification using a new set of separable two-dimensional discrete orthogonal invariant moments. J Electron Imaging 23(1):013026

  18. Hosny KM (2007) Exact Legendre moment computation for gray level images. Pattern Recogn 40(12):3597–3605

  19. Hosny KM (2011) Image representation using accurate orthogonal Gegenbauer moments. Pattern Recogn Lett 32(6):795–804

  20. Hosny KM (2012) Fast computation of accurate Gaussian–Hermite moments for image processing applications. Digit Signal Process 22(3):476–485

  21. Hosny KM, Salah A, Saleh HI, Sayed M et al (2017) Fast computation of 2D and 3D Legendre moments using multi-core CPUs and GPU parallel architectures. J. Real-Time Image Process.:1–15

  22. Hosny KM, Darwish MM et al (2018) Robust color image watermarking using invariant quaternion Legendre-Fourier moments. Multimed Tools Appl 77(19):24727–24750

  23. Hu M-K (1962) Visual pattern recognition by moment invariants. IRE Trans Inf Theory 8(2):179–187

  24. Jahid T, Hmimid A, Karmouni H, Sayyouri M, Qjidaa H, Rezzouk A et al (2018) Image analysis by Meixner moments and a digital filter. Multimed Tools Appl 77(15):19811–19831

  25. Karmouni H, Jahid T, Sayyouri M, El Alami R, Qjidaa H et al (2019) Fast 3D image reconstruction by cuboids and 3D Charlier’s moments. J Real-Time Image Process:1–17

  26. Karmouni H, Jahid T, Sayyouri M, Hmimid A, Qjidaa H et al (2019) Fast reconstruction of 3D images using Charlier discrete orthogonal moments. Circuits Syst. Signal Process. 38(8):3715–3742

  27. Kaur P, Pannu HS et al (2018) Comprehensive review of continuous and discrete orthogonal moments in biometrics. Int J Comput Math Comput Syst Theory 3(2):64–91

  28. Kaur P, Pannu HS, Malhi AK et al (2019) Plant disease recognition using fractional-order Zernike moments and SVM classifier. Neural Comput Appl 31(12):8749–8768

  29. Kazem S, Abbasbandy S, Kumar S et al (2013) Fractional-order Legendre functions for solving fractional-order differential equations. Appl Math Model 37(7):5498–5510

  30. Khotanzad A, Hong YH et al (1990) Invariant image recognition by Zernike moments. IEEE Trans Pattern Anal Mach Intell 12(5):489–497

  31. Koekoek R, Meijer HG et al (1993) A generalization of Laguerre polynomials. SIAM J Math Anal 24(3):768–782

  32. R. Koekoek, P. A. Lesky, R. F. Swarttouw, et Hypergeometric orthogonal polynomials and their q-analogues. Springer Science & Business Media, 2010.

  33. Kumar Y, Aggarwal A, Tiwari S, Singh K et al (2018) An efficient and robust approach for biomedical image retrieval using Zernike moments. Biomed Signal Process Control 39:459–473

    Article  Google Scholar 

  34. Liu N, Han J (2016) Dhsnet: Deep hierarchical saliency network for salient object detection. Proc IEEE Conf Comput Vis Pattern Recognit:678–686

  35. McGill 3D Shape Benchmark. http://www.cim.mcgill.ca/~shape/benchMark/airplane.html. (consulté le avr. 16, 2020).

  36. Mennesson J, Saint-Jean C, Mascarilla L et al (2014) Color Fourier–Mellin descriptors for image recognition. Pattern Recogn Lett 40:27–35

    Article  Google Scholar 

  37. Mohammadi F, Mohyud-Din ST et al (2016) A fractional-order Legendre collocation method for solving the Bagley-Torvik equations. Adv Differ Equ 2016(1):269

  38. Mukundan R, Ong SH, Lee PA et al (2001) Image analysis by Tchebichef moments. IEEE Trans Image Process 10(9):1357–1364

  39. S. A. Nene, S. K. Nayar, H. Murase 1996, et « Columbia object image library (coil-20) »,.

  40. Nevai P (1994) Orthogonal polynomials. In: Linear and Complex Analysis Problem Book 3. Springer, pp 177–206

  41. Pandey VK, Singh J, Parthasarathy H (2018) Algebraic technique for computationally efficient Hahn moment invariants. Multidimens Syst Signal Process 29(4):1529–1552

  42. Parand K, Delkhosh M et al (2016) Solving Volterra’s population growth model of arbitrary order using the generalized fractional order of the Chebyshev functions. Ric Mat 65(1):307–328

  43. Parand K, Delkhosh M, Nikarya M et al (2017) Novel orthogonal functions for solving differential equations of arbitrary order. Tbilisi Math J 10(1):31–55

  44. Pratama SF, Muda AK, Choo Y-H, Abraham A et al (2016) Exact computation of 3D geometric moment invariants for ATS drugs identification. In: Innovations in Bio-Inspired Computing and Applications. Springer, pp 347–358

  45. Sayyouri M, Hmimid A, Qjidaa H et al (2013) Improving the performance of image classification by Hahn moment invariants. JOSA A 30(11):2381–2394

  46. Sayyouri M, Hmimid A, Qjidaa H et al (2015) A fast computation of novel set of Meixner invariant moments for image analysis. Circuits Syst Signal Process 34(3):875–900

  47. Sayyouri M, Hmimid A, Qjidaa H et al (2016) Image analysis using separable discrete moments of Charlier-Hahn. Multimed Tools Appl 75(1):547–571

  48. Shape Matching/Retrieval. http://www.dabi.temple.edu/~shape/MPEG7/dataset.html (consulté le avr. 16, 2020).

  49. Singh C, Upneja R et al (2014) Accurate calculation of high order pseudo-Zernike moments and their numerical stability. Digit Signal Process 27:95–106

    Article  Google Scholar 

  50. Teague MR (1980) Image analysis via the general theory of moments. JOSA 70(8):920–930

  51. Upneja R, Singh C et al (2015) Fast computation of Jacobi-Fourier moments for invariant image recognition. Pattern Recogn 48(5):1836–1843

  52. Xia T, Zhu H, Shu H, Haigron P, Luo L et al (2007) Image description with generalized pseudo-Zernike moments. JOSA A 24(1):50–59

  53. Xiao B, Li L, Li Y, Li W, Wang G et al (2017) Image analysis by fractional-order orthogonal moments. Inf Sci 382:135–149

    Article  Google Scholar 

  54. Yang B, Flusser J, Suk T et al (2015) 3D rotation invariants of Gaussian–Hermite moments. Pattern Recogn Lett 54:18–26

    Article  Google Scholar 

  55. Yang B, Kostková J, Flusser J, Suk T et al (2017) Scale invariants from Gaussian–Hermite moments. Signal Process 132:77–84

    Article  Google Scholar 

  56. Yang M, Bian Y, Yang J, Liu G et al (2018) Combustion state recognition of flame images using radial Chebyshev moment invariants coupled with an IFA-WSVM model. Appl Sci 8(11):2331

  57. H. Zhang, Z. Li, Y. Liu 2016, et « Fractional orthogonal Fourier-Mellin moments for pattern recognition », in Chinese Conference on Pattern Recogn, , p. 766–778.

  58. Zhao J-X, Cao Y, Fan D-P, Cheng M-M, Li X-Y, Zhang L et al (2019) Contrast prior and fluid pyramid integration for RGBD salient object detection. Proc IEEE Conf Comput Vis Pattern Recognit:3927–3936

  59. Zhu H, Shu H, Zhou J, Luo L, Coatrieux J-L et al (2007) Image analysis by discrete orthogonal dual Hahn moments. Pattern Recogn Lett 28(13):1688–1704

  60. Zhu H, Liu M, Ji H, Li Y et al (2010) Combined invariants to blur and rotation using Zernike moment descriptors. Pattern Anal Appl 13(3):309–319

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. El Ogri.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Ogri, O., Daoui, A., Yamni, M. et al. New set of fractional-order generalized Laguerre moment invariants for pattern recognition. Multimed Tools Appl 79, 23261–23294 (2020). https://doi.org/10.1007/s11042-020-09084-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09084-1

Keywords

Navigation