Abstract
Safety and reliability analysis is an important issue to prevent an event which may to occurrence of catastrophic accident in process industries. In this context, conventional safety and reliability assessment technique like as fault tree analysis have been widely used in this regards; however, they still suffer in subjective uncertainty processing and dynamic structure representation which are important in risk assessment procedure. In this paper, a new framework based on 2-tuple intuitionistic fuzzy numbers and Bayesian network mechanism is proposed to evaluate system reliability, to deal with mentioned drawbacks, and to recognize the most critical system components which affects the system reliability. The reliability and safety guarantee of such system in the aspect of continuity operations and enhancing the safety of operators and vehicle drivers are crucial. The results revealed that the proposed model could be useful for diagnosing the systems’ faults compared with listing approaches of safety and reliability analysis.
Similar content being viewed by others
References
Yazdi, M.: The application of bow-tie method in hydrogen sulfide risk management using layer of protection analysis (LOPA). J. Fail. Anal. Prev. 17, 291–303 (2017). https://doi.org/10.1007/s11668-017-0247-x
Nan, C., Khan, F., Iqbal, M.T.: Real-time fault diagnosis using knowledge-based expert system. Process Saf. Environ. Prot. 86, 55–71 (2008). https://doi.org/10.1016/j.psep.2007.10.014
Abdo, H., Flaus, J.-M.: Monte Carlo simulation to solve fuzzy dynamic fault tree. IFAC-PapersOnLine 49, 1886–1891 (2016). https://doi.org/10.1016/j.ifacol.2016.07.905
Yeung, D.S., Tsang, E.C.C.: Fuzzy knowledge representation and reasoning using Petri nets. Expert Syst. Appl. 7, 281–289 (1994). https://doi.org/10.1016/0957-4174(94)90044-2
Constantin, C.V., Negoiță, V., Virgil, C.: Expert Systems and Fuzzy Systems. Benjamin/Cummings Pub. Co (1985). https://dl.acm.org/citation.cfm?id=2321. Accessed 9 Mar 2018
Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Log. 7, 499–562 (2006). https://doi.org/10.1145/1149114.1149117
Minker, J.: On indefinite databases and the closed world assumption. In: 6th Conference on Automated Deduction, pp. 292–308. Springer, Berlin (1982). https://doi.org/10.1007/bfb0000066
Chen, S.H., Jakeman, A.J., Norton, J.P.: Artificial intelligence techniques: an introduction to their use for modelling environmental systems. Math. Comput. Simul. 78, 379–400 (2008). https://doi.org/10.1016/J.MATCOM.2008.01.028
Jain, S., Jain, N.K.: A generalized knowledge representation system for context sensitive reasoning: generalized HCPRs System. Artif. Intell. Rev. 30, 39–52 (2008). https://doi.org/10.1007/s10462-009-9115-8
Jain, N.K., Bharadwaj, K.K., Marranghello, N.: Extended hierarchical censored production rules (EHCPRs) system: an approach toward generalized knowledge representation. J. Intell. Syst. 9, 259–295 (1999). https://doi.org/10.1515/JISYS.1999.9.3-4.259
Yeung, D.S., Tsang, E.C.C.: Weighted fuzzy production rules. Fuzzy Sets Syst. 88, 299–313 (1997). https://doi.org/10.1016/S0165-0114(96)00052-8
Looney, C.G.: Fuzzy Petri nets for rule-based decision making. IEEE Trans. Syst. Man Cybern. 18, 178–183 (1988). https://doi.org/10.1109/21.87067
Polanyi, M.: The Tacit Dimension (1966). https://philpapers.org/rec/POLTTD-2. Accessed 8 Mar 2018
Woo, J.H., Clayton, M.J., Johnson, R.E., Flores, B.E., Ellis, C.: Dynamic knowledge map: reusing experts’ tacit knowledge in the AEC industry. Autom. Constr. 13, 203–207 (2004). https://doi.org/10.1016/j.autcon.2003.09.003
Hau, Y.S., Kim, B., Lee, H., Kim, Y.G.: The effects of individual motivations and social capital on employees’ tacit and explicit knowledge sharing intentions. Int. J. Inf. Manag. 33, 356–366 (2013). https://doi.org/10.1016/j.ijinfomgt.2012.10.009
Jasimuddin, S.M., Klein, J.H., Connell, C.: The paradox of using tacit and explicit knowledge. Manag. Decis. 43, 102–112 (2005). https://doi.org/10.1108/00251740510572515
Li, H., You, J.-X., Liu, H.-C., Tian, G.: Acquiring and sharing tacit knowledge based on interval 2-tuple linguistic assessments and extended fuzzy Petri nets. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 26, 43–65 (2018). https://doi.org/10.1142/s0218488518500034
Liu, H.-C., Liu, L., Lin, Q.-L., Liu, N.: Knowledge acquisition and representation using fuzzy evidential reasoning and dynamic adaptive fuzzy Petri nets. IEEE Trans. Cybern. 43, 1059–1072 (2013). https://doi.org/10.1109/TSMCB.2012.2223671
Liu, H.-C., Lin, Q.-L., Mao, L.-X., Zhang, Z.-Y.: Dynamic adaptive fuzzy Petri nets for knowledge representation and reasoning. IEEE Trans. Syst. Man Cybern. Syst. 43, 1399–1410 (2013). https://doi.org/10.1109/TSMC.2013.2256125
Yazdi, M.: An extension of fuzzy improved risk graph and fuzzy analytical hierarchy process for determination of chemical complex safety integrity levels. Int. J. Occup. Saf. Ergon. (2017). https://doi.org/10.1080/10803548.2017.1419654
Zhou, K.-Q., Zain, A.M.: Fuzzy Petri nets and industrial applications: a review. Artif. Intell. Rev. 45, 405–446 (2016). https://doi.org/10.1007/s10462-015-9451-9
Deng, X., Han, D., Dezert, J., Deng, Y., Shyr, Y.: Evidence combination from an evolutionary game theory perspective. IEEE Trans. Cybern. 46, 2070–2082 (2016)
Yan, H.S.: A new complicated-knowledge representation approach based on knowledge meshes. IEEE Trans. Knowl. Data Eng. 18, 47–62 (2006). https://doi.org/10.1109/TKDE.2006.2
Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965). https://doi.org/10.1109/2.53
Liu, H.-C., Lin, Q.-L., Wu, J.: Dependent interval 2-tuple linguistic aggregation operators and their application to multiple attribute group decision making. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 22, 717–735 (2014). https://doi.org/10.1142/s0218488514500366
Aven, T., Baraldi, P., Flage, R., Zio, E. (eds.): Uncertainty in Risk Assessment. Wiley, Chichester (2014). https://doi.org/10.1002/9781118763032
Yazdi, M.: Risk assessment based on novel intuitionistic fuzzy-hybrid-modified TOPSIS approach. Saf. Sci. (2018). https://doi.org/10.1016/j.ssci.2018.03.005
Liu, H.C., You, J.X., You, X.Y.: Evaluating the risk of healthcare failure modes using interval 2-tuple hybrid weighted distance measure. Comput. Ind. Eng. 78, 249–258 (2014). https://doi.org/10.1016/j.cie.2014.07.018
Liu, H.-C., You, J.-X., Li, P., Su, Q.: Failure mode and effect analysis under uncertainty: an integrated multiple criteria decision making approach. IEEE Trans. Reliab. 65, 1380–1392 (2016). https://doi.org/10.1109/TR.2016.2570567
Wan, S., Xu, G., Dong, J.: Supplier selection using ANP and ELECTRE II in interval 2-tuple linguistic environment. Inf. Sci. (Ny) 385–386, 19–38 (2017). https://doi.org/10.1016/j.ins.2016.12.032
Singh, A., Gupta, A., Mehra, A.: Energy planning problems with interval-valued 2-tuple linguistic information. Oper. Res. 17, 821–848 (2017). https://doi.org/10.1007/s12351-016-0245-x
Shan, M.M., You, J.X., Liu, H.C.: Some interval 2-tuple linguistic harmonic mean operators and their application in material selection. Adv. Mater. Sci. Eng. (2016). https://doi.org/10.1155/2016/7034938
Lin, J., Zhang, Q., Meng, F.: An approach for facility location selection based on optimal aggregation operator. Knowl. Based Syst. 85, 143–158 (2015). https://doi.org/10.1016/j.knosys.2015.05.001
Bozdag, E., Asan, U., Soyer, A., Serdarasan, S.: Risk prioritization in failure mode and effects analysis using interval type-2 fuzzy sets. Expert Syst. Appl. 42, 4000–4015 (2015). https://doi.org/10.1016/j.eswa.2015.01.015
Liu, H., Liu, L., Li, P.: Failure mode and effects analysis using intuitionistic fuzzy hybrid weighted Euclidean distance operator. Int. J. Syst. Sci. 45, 2012–2030 (2014). https://doi.org/10.1080/00207721.2012.760669
Yazdi, M., Zarei, E.: Uncertainty handling in the safety risk analysis: an integrated approach based on fuzzy fault tree analysis. J. Fail. Anal. Prev. 18, 392–404 (2018). https://doi.org/10.1007/s11668-018-0421-9
Rajakarunakaran, S., Maniram Kumar, A., Arumuga Prabhu, V.: Applications of fuzzy faulty tree analysis and expert elicitation for evaluation of risks in LPG refuelling station. J. Loss Prev. Process Ind. 33, 109–123 (2015). https://doi.org/10.1016/j.jlp.2014.11.016
Ming-Hung, S., Ching-Hsue, C., Chang, J.-R.: Using intuitionistic fuzzy sets for fault-tree analysis on printed circuit board. Assembly 46, 2139–2148 (2006). https://doi.org/10.1016/j.microrel.2006.01.007
Chang, J.R., Chang, K.H., Liao, S.H., Cheng, C.H.: The reliability of general vague fault-tree analysis on weapon systems fault diagnosis. Soft. Comput. 10, 531–542 (2006). https://doi.org/10.1007/s00500-005-0483-y
Cheng, S.R., Lin, B., Hsu, B.M., Shu, M.H.: Fault-tree analysis for liquefied natural gas terminal emergency shutdown system. Expert Syst. Appl. 36, 11918–11924 (2009). https://doi.org/10.1016/j.eswa.2009.04.011
Kumar, M., Yadav, S.P.: The weakest t-norm based intuitionistic fuzzy fault-tree analysis to evaluate system reliability. ISA Trans. 51, 531–538 (2012). https://doi.org/10.1016/j.isatra.2012.01.004
M. Rausand, Risk assessment : theory, methods, and applications, J. Wiley & Sons, 2011
Huang, H.Z., Zuo, M.J., Sun, Z.Q.: Bayesian reliability analysis for fuzzy lifetime data. Fuzzy Sets Syst. 157, 1674–1686 (2006). https://doi.org/10.1016/j.polymdegradstab.2005.12.004
Hänninen, M., Valdez Banda, O.A., Kujala, P.: Bayesian network model of maritime safety management. Expert Syst. Appl. 41, 7837–7846 (2014). https://doi.org/10.1016/j.eswa.2014.06.029
Bouejla, A., Chaze, X., Guarnieri, F., Napoli, A.: A Bayesian network to manage risks of maritime piracy against offshore oil fields. Saf. Sci. 68, 222–230 (2014). https://doi.org/10.1016/j.ssci.2014.04.010
Khakzad, N., Khan, F., Amyotte, P.: Quantitative risk analysis of offshore drilling operations: a Bayesian approach. Saf. Sci. 57, 108–117 (2013). https://doi.org/10.1016/j.ssci.2013.01.022
Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs. Springer, New York (2007). https://doi.org/10.1007/978-0-387-68282-2
Zarei, E., Azadeh, A., Aliabadi, M.M., Mohammadfam, I.: Dynamic safety risk modeling of process systems using bayesian network. Process Saf. Prog. (2017). https://doi.org/10.1002/prs.11889. (in press)
Abbassi, R., Bhandari, J., Khan, F., Garaniya, V., Chai, S.: Developing a quantitative risk-based methodology for maintenance scheduling using Bayesian network. Chem. Eng. Trans. 48, 235–240 (2016). https://doi.org/10.3303/CET1648040
Hashemi, S.J., Khan, F., Ahmed, S.: Multivariate probabilistic safety analysis of process facilities using the Copula Bayesian Network model. Comput. Chem. Eng. 93, 128–142 (2016). https://doi.org/10.1016/j.compchemeng.2016.06.011
Yeo, C.T., Bhandari, J., Abbassi, R., Garaniya, V., Chai, S., Shomali, B.: Dynamic risk analysis of offloading process in floating liquefied natural gas (FLNG) platform using Bayesian Network. J. Loss Prev. Process Ind. 41, 259–269 (2016). https://doi.org/10.1016/j.jlp.2016.04.002
Khakzad, S., Khan, F., Abbassi, R., Khakzad, N.: Accident risk-based life cycle assessment methodology for green and safe fuel selection. Process Saf. Environ. Prot. 109, 268–287 (2017). https://doi.org/10.1016/j.psep.2017.04.005
Khakzad, N., Reniers, G., Abbassi, R., Khan, F.: Vulnerability analysis of process plants subject to domino effects. Reliab. Eng. Syst. Saf. 154, 127–136 (2016). https://doi.org/10.1016/j.ress.2016.06.004
Pereira, J.C., Fragoso, M.D., Todorov, M.G.: Risk assessment using bayesian belief networks and analytic hierarchy process applicable to jet engine high pressure turbine assembly. IFAC-PapersOnLine 49, 133–138 (2016). https://doi.org/10.1016/j.ifacol.2016.07.563
Zarei, E., Azadeh, A., Khakzad, N., Aliabadi, M.M., Mohammadfam, I.: Dynamic safety assessment of natural gas stations using Bayesian network. J. Hazard. Mater. 321, 830–840 (2017). https://doi.org/10.1016/j.jhazmat.2016.09.074
Khakzad, N., Khan, F., Amyotte, P.: Dynamic safety analysis of process systems by mapping bow-tie into Bayesian network. Process Saf. Environ. Prot. 91, 46–53 (2013). https://doi.org/10.1016/j.psep.2012.01.005
Barua, S., Gao, X., Pasman, H., Mannan, M.S.: Bayesian network based dynamic operational risk assessment. J. Loss Prev. Process Ind. 41, 399–410 (2016). https://doi.org/10.1016/j.jlp.2015.11.024
Marvin, H.J.P., Bouzembrak, Y., Janssen, E.M., van der Zande, M., Murphy, F., Sheehan, B., Mullins, M., Bouwmeester, H.: Application of Bayesian networks for hazard ranking of nanomaterials to support human health risk assessment. Nanotoxicology 5390, 1–34 (2017). https://doi.org/10.1080/17435390.2016.1278481
Kabir, S., Walker, M., Papadopoulos, Y.: Dynamic system safety analysis in HiP-HOPS with Petri nets and Bayesian networks. Saf. Sci. 105, 55–70 (2018). https://doi.org/10.1016/j.ssci.2018.02.001
Fischer, X., Nadeau, J.-P.: Interactive design: then and now. In: Research in Interactive Design, vol. 3, pp. 1–5. Springer, Paris (2011). https://doi.org/10.1007/978-2-8178-0169-8_1
Yazdi, M.: Improving failure mode and effect analysis (FMEA) with consideration of uncertainty handling as an interactive approach. Int. J. Interact. Des. Manuf. (2018). https://doi.org/10.1007/s12008-018-0496-2
Liu, Y., Fan, Z.P., Yuan, Y., Li, H.: A FTA-based method for risk decision-making in emergency response. Comput. Oper. Res. 42, 49–57 (2014). https://doi.org/10.1016/j.cor.2012.08.015
Yazdi, M., Nikfar, F., Nasrabadi, M.: Failure probability analysis by employing fuzzy fault tree analysis. Int. J. Syst. Assur. Eng. Manag. 8, 1177–1193 (2017). https://doi.org/10.1007/s13198-017-0583-y
Guan, Y., Zhao, J., Shi, T., Zhu, P.: Fault tree analysis of fire and explosion accidents for dual fuel (diesel/natural gas) ship engine rooms. J. Mar. Sci. Appl. 15, 331–335 (2016). https://doi.org/10.1007/s11804-016-1366-6
M. Rausand, Reliability of safety-critical systems, 2014
Kabir, S.: An overview of fault tree analysis and its application in model based dependability analysis. Expert Syst. Appl. 77, 114–135 (2017). https://doi.org/10.1016/j.eswa.2017.01.058
Ferdous, R., Khan, F., Sadiq, R., Amyotte, P., Veitch, B.: Fault and event tree analyses for process systems risk analysis: uncertainty handling formulations. Risk Anal. 31, 86–107 (2011). https://doi.org/10.1111/j.1539-6924.2010.01475.x
Yazdi, M.: Hybrid probabilistic risk assessment using fuzzy FTA and fuzzy AHP in a process industry. J. Fail. Anal. Prev. 17, 756–764 (2017). https://doi.org/10.1007/s11668-017-0305-4
Smith, D., Veitch, B., Khan, F., Taylor, R.: Understanding industrial safety: comparing fault tree, Bayesian network, and FRAM approaches. J. Loss Prev. Process Ind. 45, 88–101 (2017). https://doi.org/10.1016/j.jlp.2016.11.016
Adedigba, S.A., Khan, F., Yang, M.: Dynamic failure analysis of process systems using principal component analysis and Bayesian network. Ind. Eng. Chem. Res. 56, 2094–2106 (2017). https://doi.org/10.1021/acs.iecr.6b03356
Xin, P., Khan, F., Ahmed, S.: Dynamic hazard identification and scenario mapping using Bayesian network. Process Saf. Environ. Prot. 105, 143–155 (2017). https://doi.org/10.1016/j.psep.2016.11.003
Chiremsel, Z., Said, R.N., Chiremsel, R.: Probabilistic fault diagnosis of safety instrumented systems based on fault tree analysis and Bayesian network. J. Fail. Anal. Prev. 16, 747–760 (2016). https://doi.org/10.1007/s11668-016-0140-z
Zhang, C., Wei, Y., Li, Z., Zhao, Y.: Hazard-based design of the bow-tie method to prevent and mitigate mine accidents. J. Fail. Anal. Prev. (2017). https://doi.org/10.1007/s11668-017-0367-3
Chang, Y., Chen, G., Wu, X., Ye, J., Chen, B., Xu, L.: Journal of loss prevention in the process industries failure probability analysis for emergency disconnect of deepwater drilling riser using Bayesian network. J. Loss Prev. Process Ind. 51, 42–53 (2018). https://doi.org/10.1016/j.jlp.2017.11.005
Yazdi, M., Kabir, S.: A fuzzy Bayesian network approach for risk analysis in process industries. Process Saf. Environ. Prot. 111, 507–519 (2017). https://doi.org/10.1016/j.psep.2017.08.015
Ford, D.N., Sterman, J.D.: Expert knowledge elicitation to improve formal and mental models. Syst. Dyn. Rev. 14, 309–340 (1998). https://doi.org/10.1002/(SICI)1099-1727(199824)14:4<309::AID-SDR154>3.0.CO;2-5
Yazdi, M., Daneshvar, S., Setareh, H.: An extension to fuzzy developed failure mode and effects analysis (FDFMEA) application for aircraft landing system. Saf. Sci. 98, 113–123 (2017). https://doi.org/10.1016/j.ssci.2017.06.009
Helvacioglu, S., Ozen, E.: Fuzzy based failure modes and effect analysis for yacht system design. Ocean Eng. 79, 131–141 (2014). https://doi.org/10.1016/j.oceaneng.2013.12.015
Saaty, T.L.: Creative Thinking, Problem Solving and Decision Making. RWS Publications, Pittsburgh (2010)
Guneri, A.F., Gul, M., Ozgurler, S.: A fuzzy AHP methodology for selection of risk assessment methods in occupational safety. Int. J. Risk Assess. Manag. 18, 319 (2015). https://doi.org/10.1504/IJRAM.2015.071222
Buckley, J.J.: Fuzzy hierarchical analysis. Fuzzy Sets Syst. 17, 233–247 (1985). https://doi.org/10.1016/0165-0114(85)90090-9
Chang, D.-Y.: Applications of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res. 95, 649–655 (1996). https://doi.org/10.1016/0377-2217(95)00300-2
Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986). https://doi.org/10.1016/S0165-0114(86)80034-3
Xu, Z.: Approaches to multiple attribute group decision making based on intuitionistic fuzzy power aggregation operators. Knowl. Based Syst. 24, 749–760 (2011). https://doi.org/10.1016/j.knosys.2011.01.011
Chang, K.-H., Cheng, C.-H.: A risk assessment methodology using intuitionistic fuzzy set in FMEA. Int. J. Syst. Sci. 41, 1457–1471 (2010). https://doi.org/10.1080/00207720903353633
Chang, K.H., Cheng, C.H., Chang, Y.C.: Reprioritization of failures in a silane supply system using an intuitionistic fuzzy set ranking technique. Soft. Comput. 14, 285–298 (2010). https://doi.org/10.1007/s00500-009-0403-7
Atanassov, K.T.: On the concept of intuitionistic fuzzy sets. In: 2012, pp. 1–16. https://doi.org/10.1007/978-3-642-29127-2_1
Liu, H., You, J., Shan, M., Shao, L.: Failure mode and effects analysis using intuitionistic fuzzy hybrid TOPSIS approach. Soft Comput. 19, 1085–1098 (2015). https://doi.org/10.1007/s00500-014-1321-x
Szmidt, E.: Introduction. In: Distances and similarities in intuitionistic fuzzy sets. Studies in Fuzziness and Soft Computing, vol. 307. Springer, Cham (2014)
Xu, Z., Yager, R.R.: Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen. Syst. 35, 417–433 (2006). https://doi.org/10.1080/03081070600574353
Wang, W., Liu, X.: Intuitionistic fuzzy information aggregation using einstein operations. IEEE Trans. Fuzzy Syst. 20, 923–938 (2012). https://doi.org/10.1109/TFUZZ.2012.2189405
Xu, Z., Zhao, N.: Information fusion for intuitionistic fuzzy decision making: an overview. Inf. Fusion 28, 10–23 (2016). https://doi.org/10.1016/j.inffus.2015.07.001
Xu, Z.: Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 15, 1179–1187 (2007)
Zeng, S.: The intuitionistic fuzzy ordered weighted averaging-weighted average operator and its application in financial decision making. World Acad. Sci. Eng. Technol. 6, 541–547 (2012)
Boran, F.E., Genç, S., Kurt, M., Akay, D.: A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Expert Syst. Appl. 36, 11363–11368 (2009). https://doi.org/10.1016/j.eswa.2009.03.039
Anzilli, L., Facchinetti, G.: A New Proposal of Defuzzification of Intuitionistic Fuzzy Quantities, pp. 185–195. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26211-6_16
Onisawa, T.: Subjective analysis of system reliability and its analyzer. Fuzzy Sets Syst. 83, 249–269 (1996). https://doi.org/10.1016/0165-0114(95)00381-9
Onisawa, T.: A representation of human reliability using fuzzy concepts. Inf. Sci. (Ny) 45, 153–173 (1988). https://doi.org/10.1016/0020-0255(88)90038-2
Kabir, S., Yazdi, M., Aizpurua, J.I., Papadopoulos, Y.: Uncertainty-aware dynamic reliability analysis framework for complex systems. IEEE Access. 6, 29499–29515 (2018). https://doi.org/10.1109/ACCESS.2018.2843166
Vesely, W.E., Stamatelatos, M., Dugan, J., Fragola, J., Minarick, J.,Railsback, J. : Fault tree handbook with aerospace applications (2002)
Cheok, M.C., Parry, G.W., Sherry, R.R.: Use of importance measures in risk-informed regulatory applications. Reliab. Eng. Syst. Saf. 60, 213–226 (1998). https://doi.org/10.1016/S0951-8320(97)00144-0
Yazdi, M., Korhan, O., Daneshvar, S.: Application of fuzzy fault tree analysis based on modified fuzzy AHP and fuzzy TOPSIS for fire and explosion in process industry. Int. J. Occup. Saf. Ergon. (2018). https://doi.org/10.1080/10803548.2018.1454636
Nedjati, A., Izbirak, G., Arkat, J.: Bi-objective covering tour location routing problem with replenishment at intermediate depots: formulation and meta-heuristics. Comput. Ind. Eng. 110, 191–206 (2017). https://doi.org/10.1016/J.CIE.2017.06.004
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yazdi, M., Soltanali, H. Knowledge acquisition development in failure diagnosis analysis as an interactive approach. Int J Interact Des Manuf 13, 193–210 (2019). https://doi.org/10.1007/s12008-018-0504-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12008-018-0504-6