Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Knowledge acquisition development in failure diagnosis analysis as an interactive approach

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Safety and reliability analysis is an important issue to prevent an event which may to occurrence of catastrophic accident in process industries. In this context, conventional safety and reliability assessment technique like as fault tree analysis have been widely used in this regards; however, they still suffer in subjective uncertainty processing and dynamic structure representation which are important in risk assessment procedure. In this paper, a new framework based on 2-tuple intuitionistic fuzzy numbers and Bayesian network mechanism is proposed to evaluate system reliability, to deal with mentioned drawbacks, and to recognize the most critical system components which affects the system reliability. The reliability and safety guarantee of such system in the aspect of continuity operations and enhancing the safety of operators and vehicle drivers are crucial. The results revealed that the proposed model could be useful for diagnosing the systems’ faults compared with listing approaches of safety and reliability analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yazdi, M.: The application of bow-tie method in hydrogen sulfide risk management using layer of protection analysis (LOPA). J. Fail. Anal. Prev. 17, 291–303 (2017). https://doi.org/10.1007/s11668-017-0247-x

    Article  Google Scholar 

  2. Nan, C., Khan, F., Iqbal, M.T.: Real-time fault diagnosis using knowledge-based expert system. Process Saf. Environ. Prot. 86, 55–71 (2008). https://doi.org/10.1016/j.psep.2007.10.014

    Article  Google Scholar 

  3. Abdo, H., Flaus, J.-M.: Monte Carlo simulation to solve fuzzy dynamic fault tree. IFAC-PapersOnLine 49, 1886–1891 (2016). https://doi.org/10.1016/j.ifacol.2016.07.905

    Article  Google Scholar 

  4. Yeung, D.S., Tsang, E.C.C.: Fuzzy knowledge representation and reasoning using Petri nets. Expert Syst. Appl. 7, 281–289 (1994). https://doi.org/10.1016/0957-4174(94)90044-2

    Article  Google Scholar 

  5. Constantin, C.V., Negoiță, V., Virgil, C.: Expert Systems and Fuzzy Systems. Benjamin/Cummings Pub. Co (1985). https://dl.acm.org/citation.cfm?id=2321. Accessed 9 Mar 2018

  6. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Log. 7, 499–562 (2006). https://doi.org/10.1145/1149114.1149117

    Article  MathSciNet  MATH  Google Scholar 

  7. Minker, J.: On indefinite databases and the closed world assumption. In: 6th Conference on Automated Deduction, pp. 292–308. Springer, Berlin (1982). https://doi.org/10.1007/bfb0000066

  8. Chen, S.H., Jakeman, A.J., Norton, J.P.: Artificial intelligence techniques: an introduction to their use for modelling environmental systems. Math. Comput. Simul. 78, 379–400 (2008). https://doi.org/10.1016/J.MATCOM.2008.01.028

    Article  MathSciNet  MATH  Google Scholar 

  9. Jain, S., Jain, N.K.: A generalized knowledge representation system for context sensitive reasoning: generalized HCPRs System. Artif. Intell. Rev. 30, 39–52 (2008). https://doi.org/10.1007/s10462-009-9115-8

    Article  Google Scholar 

  10. Jain, N.K., Bharadwaj, K.K., Marranghello, N.: Extended hierarchical censored production rules (EHCPRs) system: an approach toward generalized knowledge representation. J. Intell. Syst. 9, 259–295 (1999). https://doi.org/10.1515/JISYS.1999.9.3-4.259

    Google Scholar 

  11. Yeung, D.S., Tsang, E.C.C.: Weighted fuzzy production rules. Fuzzy Sets Syst. 88, 299–313 (1997). https://doi.org/10.1016/S0165-0114(96)00052-8

    Article  MathSciNet  Google Scholar 

  12. Looney, C.G.: Fuzzy Petri nets for rule-based decision making. IEEE Trans. Syst. Man Cybern. 18, 178–183 (1988). https://doi.org/10.1109/21.87067

    Article  Google Scholar 

  13. Polanyi, M.: The Tacit Dimension (1966). https://philpapers.org/rec/POLTTD-2. Accessed 8 Mar 2018

  14. Woo, J.H., Clayton, M.J., Johnson, R.E., Flores, B.E., Ellis, C.: Dynamic knowledge map: reusing experts’ tacit knowledge in the AEC industry. Autom. Constr. 13, 203–207 (2004). https://doi.org/10.1016/j.autcon.2003.09.003

    Article  Google Scholar 

  15. Hau, Y.S., Kim, B., Lee, H., Kim, Y.G.: The effects of individual motivations and social capital on employees’ tacit and explicit knowledge sharing intentions. Int. J. Inf. Manag. 33, 356–366 (2013). https://doi.org/10.1016/j.ijinfomgt.2012.10.009

    Article  Google Scholar 

  16. Jasimuddin, S.M., Klein, J.H., Connell, C.: The paradox of using tacit and explicit knowledge. Manag. Decis. 43, 102–112 (2005). https://doi.org/10.1108/00251740510572515

    Article  Google Scholar 

  17. Li, H., You, J.-X., Liu, H.-C., Tian, G.: Acquiring and sharing tacit knowledge based on interval 2-tuple linguistic assessments and extended fuzzy Petri nets. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 26, 43–65 (2018). https://doi.org/10.1142/s0218488518500034

    Article  MathSciNet  Google Scholar 

  18. Liu, H.-C., Liu, L., Lin, Q.-L., Liu, N.: Knowledge acquisition and representation using fuzzy evidential reasoning and dynamic adaptive fuzzy Petri nets. IEEE Trans. Cybern. 43, 1059–1072 (2013). https://doi.org/10.1109/TSMCB.2012.2223671

    Article  Google Scholar 

  19. Liu, H.-C., Lin, Q.-L., Mao, L.-X., Zhang, Z.-Y.: Dynamic adaptive fuzzy Petri nets for knowledge representation and reasoning. IEEE Trans. Syst. Man Cybern. Syst. 43, 1399–1410 (2013). https://doi.org/10.1109/TSMC.2013.2256125

    Article  Google Scholar 

  20. Yazdi, M.: An extension of fuzzy improved risk graph and fuzzy analytical hierarchy process for determination of chemical complex safety integrity levels. Int. J. Occup. Saf. Ergon. (2017). https://doi.org/10.1080/10803548.2017.1419654

    Google Scholar 

  21. Zhou, K.-Q., Zain, A.M.: Fuzzy Petri nets and industrial applications: a review. Artif. Intell. Rev. 45, 405–446 (2016). https://doi.org/10.1007/s10462-015-9451-9

    Article  Google Scholar 

  22. Deng, X., Han, D., Dezert, J., Deng, Y., Shyr, Y.: Evidence combination from an evolutionary game theory perspective. IEEE Trans. Cybern. 46, 2070–2082 (2016)

    Article  Google Scholar 

  23. Yan, H.S.: A new complicated-knowledge representation approach based on knowledge meshes. IEEE Trans. Knowl. Data Eng. 18, 47–62 (2006). https://doi.org/10.1109/TKDE.2006.2

    Article  Google Scholar 

  24. Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965). https://doi.org/10.1109/2.53

    Article  MATH  Google Scholar 

  25. Liu, H.-C., Lin, Q.-L., Wu, J.: Dependent interval 2-tuple linguistic aggregation operators and their application to multiple attribute group decision making. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 22, 717–735 (2014). https://doi.org/10.1142/s0218488514500366

    Article  MathSciNet  MATH  Google Scholar 

  26. Aven, T., Baraldi, P., Flage, R., Zio, E. (eds.): Uncertainty in Risk Assessment. Wiley, Chichester (2014). https://doi.org/10.1002/9781118763032

    Google Scholar 

  27. Yazdi, M.: Risk assessment based on novel intuitionistic fuzzy-hybrid-modified TOPSIS approach. Saf. Sci. (2018). https://doi.org/10.1016/j.ssci.2018.03.005

    Google Scholar 

  28. Liu, H.C., You, J.X., You, X.Y.: Evaluating the risk of healthcare failure modes using interval 2-tuple hybrid weighted distance measure. Comput. Ind. Eng. 78, 249–258 (2014). https://doi.org/10.1016/j.cie.2014.07.018

    Article  Google Scholar 

  29. Liu, H.-C., You, J.-X., Li, P., Su, Q.: Failure mode and effect analysis under uncertainty: an integrated multiple criteria decision making approach. IEEE Trans. Reliab. 65, 1380–1392 (2016). https://doi.org/10.1109/TR.2016.2570567

    Article  Google Scholar 

  30. Wan, S., Xu, G., Dong, J.: Supplier selection using ANP and ELECTRE II in interval 2-tuple linguistic environment. Inf. Sci. (Ny) 385–386, 19–38 (2017). https://doi.org/10.1016/j.ins.2016.12.032

    Article  Google Scholar 

  31. Singh, A., Gupta, A., Mehra, A.: Energy planning problems with interval-valued 2-tuple linguistic information. Oper. Res. 17, 821–848 (2017). https://doi.org/10.1007/s12351-016-0245-x

    Google Scholar 

  32. Shan, M.M., You, J.X., Liu, H.C.: Some interval 2-tuple linguistic harmonic mean operators and their application in material selection. Adv. Mater. Sci. Eng. (2016). https://doi.org/10.1155/2016/7034938

    Google Scholar 

  33. Lin, J., Zhang, Q., Meng, F.: An approach for facility location selection based on optimal aggregation operator. Knowl. Based Syst. 85, 143–158 (2015). https://doi.org/10.1016/j.knosys.2015.05.001

    Article  Google Scholar 

  34. Bozdag, E., Asan, U., Soyer, A., Serdarasan, S.: Risk prioritization in failure mode and effects analysis using interval type-2 fuzzy sets. Expert Syst. Appl. 42, 4000–4015 (2015). https://doi.org/10.1016/j.eswa.2015.01.015

    Article  Google Scholar 

  35. Liu, H., Liu, L., Li, P.: Failure mode and effects analysis using intuitionistic fuzzy hybrid weighted Euclidean distance operator. Int. J. Syst. Sci. 45, 2012–2030 (2014). https://doi.org/10.1080/00207721.2012.760669

    Article  MathSciNet  MATH  Google Scholar 

  36. Yazdi, M., Zarei, E.: Uncertainty handling in the safety risk analysis: an integrated approach based on fuzzy fault tree analysis. J. Fail. Anal. Prev. 18, 392–404 (2018). https://doi.org/10.1007/s11668-018-0421-9

    Article  Google Scholar 

  37. Rajakarunakaran, S., Maniram Kumar, A., Arumuga Prabhu, V.: Applications of fuzzy faulty tree analysis and expert elicitation for evaluation of risks in LPG refuelling station. J. Loss Prev. Process Ind. 33, 109–123 (2015). https://doi.org/10.1016/j.jlp.2014.11.016

    Article  Google Scholar 

  38. Ming-Hung, S., Ching-Hsue, C., Chang, J.-R.: Using intuitionistic fuzzy sets for fault-tree analysis on printed circuit board. Assembly 46, 2139–2148 (2006). https://doi.org/10.1016/j.microrel.2006.01.007

    Google Scholar 

  39. Chang, J.R., Chang, K.H., Liao, S.H., Cheng, C.H.: The reliability of general vague fault-tree analysis on weapon systems fault diagnosis. Soft. Comput. 10, 531–542 (2006). https://doi.org/10.1007/s00500-005-0483-y

    Article  Google Scholar 

  40. Cheng, S.R., Lin, B., Hsu, B.M., Shu, M.H.: Fault-tree analysis for liquefied natural gas terminal emergency shutdown system. Expert Syst. Appl. 36, 11918–11924 (2009). https://doi.org/10.1016/j.eswa.2009.04.011

    Article  Google Scholar 

  41. Kumar, M., Yadav, S.P.: The weakest t-norm based intuitionistic fuzzy fault-tree analysis to evaluate system reliability. ISA Trans. 51, 531–538 (2012). https://doi.org/10.1016/j.isatra.2012.01.004

    Article  Google Scholar 

  42. M. Rausand, Risk assessment : theory, methods, and applications, J. Wiley & Sons, 2011

  43. Huang, H.Z., Zuo, M.J., Sun, Z.Q.: Bayesian reliability analysis for fuzzy lifetime data. Fuzzy Sets Syst. 157, 1674–1686 (2006). https://doi.org/10.1016/j.polymdegradstab.2005.12.004

    Article  MathSciNet  MATH  Google Scholar 

  44. Hänninen, M., Valdez Banda, O.A., Kujala, P.: Bayesian network model of maritime safety management. Expert Syst. Appl. 41, 7837–7846 (2014). https://doi.org/10.1016/j.eswa.2014.06.029

    Article  Google Scholar 

  45. Bouejla, A., Chaze, X., Guarnieri, F., Napoli, A.: A Bayesian network to manage risks of maritime piracy against offshore oil fields. Saf. Sci. 68, 222–230 (2014). https://doi.org/10.1016/j.ssci.2014.04.010

    Article  Google Scholar 

  46. Khakzad, N., Khan, F., Amyotte, P.: Quantitative risk analysis of offshore drilling operations: a Bayesian approach. Saf. Sci. 57, 108–117 (2013). https://doi.org/10.1016/j.ssci.2013.01.022

    Article  Google Scholar 

  47. Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs. Springer, New York (2007). https://doi.org/10.1007/978-0-387-68282-2

    Book  MATH  Google Scholar 

  48. Zarei, E., Azadeh, A., Aliabadi, M.M., Mohammadfam, I.: Dynamic safety risk modeling of process systems using bayesian network. Process Saf. Prog. (2017). https://doi.org/10.1002/prs.11889. (in press)

    Google Scholar 

  49. Abbassi, R., Bhandari, J., Khan, F., Garaniya, V., Chai, S.: Developing a quantitative risk-based methodology for maintenance scheduling using Bayesian network. Chem. Eng. Trans. 48, 235–240 (2016). https://doi.org/10.3303/CET1648040

    Google Scholar 

  50. Hashemi, S.J., Khan, F., Ahmed, S.: Multivariate probabilistic safety analysis of process facilities using the Copula Bayesian Network model. Comput. Chem. Eng. 93, 128–142 (2016). https://doi.org/10.1016/j.compchemeng.2016.06.011

    Article  Google Scholar 

  51. Yeo, C.T., Bhandari, J., Abbassi, R., Garaniya, V., Chai, S., Shomali, B.: Dynamic risk analysis of offloading process in floating liquefied natural gas (FLNG) platform using Bayesian Network. J. Loss Prev. Process Ind. 41, 259–269 (2016). https://doi.org/10.1016/j.jlp.2016.04.002

    Article  Google Scholar 

  52. Khakzad, S., Khan, F., Abbassi, R., Khakzad, N.: Accident risk-based life cycle assessment methodology for green and safe fuel selection. Process Saf. Environ. Prot. 109, 268–287 (2017). https://doi.org/10.1016/j.psep.2017.04.005

    Article  Google Scholar 

  53. Khakzad, N., Reniers, G., Abbassi, R., Khan, F.: Vulnerability analysis of process plants subject to domino effects. Reliab. Eng. Syst. Saf. 154, 127–136 (2016). https://doi.org/10.1016/j.ress.2016.06.004

    Article  Google Scholar 

  54. Pereira, J.C., Fragoso, M.D., Todorov, M.G.: Risk assessment using bayesian belief networks and analytic hierarchy process applicable to jet engine high pressure turbine assembly. IFAC-PapersOnLine 49, 133–138 (2016). https://doi.org/10.1016/j.ifacol.2016.07.563

    Article  Google Scholar 

  55. Zarei, E., Azadeh, A., Khakzad, N., Aliabadi, M.M., Mohammadfam, I.: Dynamic safety assessment of natural gas stations using Bayesian network. J. Hazard. Mater. 321, 830–840 (2017). https://doi.org/10.1016/j.jhazmat.2016.09.074

    Article  Google Scholar 

  56. Khakzad, N., Khan, F., Amyotte, P.: Dynamic safety analysis of process systems by mapping bow-tie into Bayesian network. Process Saf. Environ. Prot. 91, 46–53 (2013). https://doi.org/10.1016/j.psep.2012.01.005

    Article  Google Scholar 

  57. Barua, S., Gao, X., Pasman, H., Mannan, M.S.: Bayesian network based dynamic operational risk assessment. J. Loss Prev. Process Ind. 41, 399–410 (2016). https://doi.org/10.1016/j.jlp.2015.11.024

    Article  Google Scholar 

  58. Marvin, H.J.P., Bouzembrak, Y., Janssen, E.M., van der Zande, M., Murphy, F., Sheehan, B., Mullins, M., Bouwmeester, H.: Application of Bayesian networks for hazard ranking of nanomaterials to support human health risk assessment. Nanotoxicology 5390, 1–34 (2017). https://doi.org/10.1080/17435390.2016.1278481

    Google Scholar 

  59. Kabir, S., Walker, M., Papadopoulos, Y.: Dynamic system safety analysis in HiP-HOPS with Petri nets and Bayesian networks. Saf. Sci. 105, 55–70 (2018). https://doi.org/10.1016/j.ssci.2018.02.001

    Article  Google Scholar 

  60. Fischer, X., Nadeau, J.-P.: Interactive design: then and now. In: Research in Interactive Design, vol. 3, pp. 1–5. Springer, Paris (2011). https://doi.org/10.1007/978-2-8178-0169-8_1

  61. Yazdi, M.: Improving failure mode and effect analysis (FMEA) with consideration of uncertainty handling as an interactive approach. Int. J. Interact. Des. Manuf. (2018). https://doi.org/10.1007/s12008-018-0496-2

    Google Scholar 

  62. Liu, Y., Fan, Z.P., Yuan, Y., Li, H.: A FTA-based method for risk decision-making in emergency response. Comput. Oper. Res. 42, 49–57 (2014). https://doi.org/10.1016/j.cor.2012.08.015

    Article  MathSciNet  MATH  Google Scholar 

  63. Yazdi, M., Nikfar, F., Nasrabadi, M.: Failure probability analysis by employing fuzzy fault tree analysis. Int. J. Syst. Assur. Eng. Manag. 8, 1177–1193 (2017). https://doi.org/10.1007/s13198-017-0583-y

    Article  Google Scholar 

  64. Guan, Y., Zhao, J., Shi, T., Zhu, P.: Fault tree analysis of fire and explosion accidents for dual fuel (diesel/natural gas) ship engine rooms. J. Mar. Sci. Appl. 15, 331–335 (2016). https://doi.org/10.1007/s11804-016-1366-6

    Article  Google Scholar 

  65. M. Rausand, Reliability of safety-critical systems, 2014

  66. Kabir, S.: An overview of fault tree analysis and its application in model based dependability analysis. Expert Syst. Appl. 77, 114–135 (2017). https://doi.org/10.1016/j.eswa.2017.01.058

    Article  Google Scholar 

  67. Ferdous, R., Khan, F., Sadiq, R., Amyotte, P., Veitch, B.: Fault and event tree analyses for process systems risk analysis: uncertainty handling formulations. Risk Anal. 31, 86–107 (2011). https://doi.org/10.1111/j.1539-6924.2010.01475.x

    Article  Google Scholar 

  68. Yazdi, M.: Hybrid probabilistic risk assessment using fuzzy FTA and fuzzy AHP in a process industry. J. Fail. Anal. Prev. 17, 756–764 (2017). https://doi.org/10.1007/s11668-017-0305-4

    Article  Google Scholar 

  69. Smith, D., Veitch, B., Khan, F., Taylor, R.: Understanding industrial safety: comparing fault tree, Bayesian network, and FRAM approaches. J. Loss Prev. Process Ind. 45, 88–101 (2017). https://doi.org/10.1016/j.jlp.2016.11.016

    Article  Google Scholar 

  70. Adedigba, S.A., Khan, F., Yang, M.: Dynamic failure analysis of process systems using principal component analysis and Bayesian network. Ind. Eng. Chem. Res. 56, 2094–2106 (2017). https://doi.org/10.1021/acs.iecr.6b03356

    Article  Google Scholar 

  71. Xin, P., Khan, F., Ahmed, S.: Dynamic hazard identification and scenario mapping using Bayesian network. Process Saf. Environ. Prot. 105, 143–155 (2017). https://doi.org/10.1016/j.psep.2016.11.003

    Article  Google Scholar 

  72. Chiremsel, Z., Said, R.N., Chiremsel, R.: Probabilistic fault diagnosis of safety instrumented systems based on fault tree analysis and Bayesian network. J. Fail. Anal. Prev. 16, 747–760 (2016). https://doi.org/10.1007/s11668-016-0140-z

    Article  Google Scholar 

  73. Zhang, C., Wei, Y., Li, Z., Zhao, Y.: Hazard-based design of the bow-tie method to prevent and mitigate mine accidents. J. Fail. Anal. Prev. (2017). https://doi.org/10.1007/s11668-017-0367-3

    Google Scholar 

  74. Chang, Y., Chen, G., Wu, X., Ye, J., Chen, B., Xu, L.: Journal of loss prevention in the process industries failure probability analysis for emergency disconnect of deepwater drilling riser using Bayesian network. J. Loss Prev. Process Ind. 51, 42–53 (2018). https://doi.org/10.1016/j.jlp.2017.11.005

    Article  Google Scholar 

  75. Yazdi, M., Kabir, S.: A fuzzy Bayesian network approach for risk analysis in process industries. Process Saf. Environ. Prot. 111, 507–519 (2017). https://doi.org/10.1016/j.psep.2017.08.015

    Article  Google Scholar 

  76. Ford, D.N., Sterman, J.D.: Expert knowledge elicitation to improve formal and mental models. Syst. Dyn. Rev. 14, 309–340 (1998). https://doi.org/10.1002/(SICI)1099-1727(199824)14:4<309::AID-SDR154>3.0.CO;2-5

    Article  Google Scholar 

  77. Yazdi, M., Daneshvar, S., Setareh, H.: An extension to fuzzy developed failure mode and effects analysis (FDFMEA) application for aircraft landing system. Saf. Sci. 98, 113–123 (2017). https://doi.org/10.1016/j.ssci.2017.06.009

    Article  Google Scholar 

  78. Helvacioglu, S., Ozen, E.: Fuzzy based failure modes and effect analysis for yacht system design. Ocean Eng. 79, 131–141 (2014). https://doi.org/10.1016/j.oceaneng.2013.12.015

    Article  Google Scholar 

  79. Saaty, T.L.: Creative Thinking, Problem Solving and Decision Making. RWS Publications, Pittsburgh (2010)

    Google Scholar 

  80. Guneri, A.F., Gul, M., Ozgurler, S.: A fuzzy AHP methodology for selection of risk assessment methods in occupational safety. Int. J. Risk Assess. Manag. 18, 319 (2015). https://doi.org/10.1504/IJRAM.2015.071222

    Article  Google Scholar 

  81. Buckley, J.J.: Fuzzy hierarchical analysis. Fuzzy Sets Syst. 17, 233–247 (1985). https://doi.org/10.1016/0165-0114(85)90090-9

    Article  MathSciNet  MATH  Google Scholar 

  82. Chang, D.-Y.: Applications of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res. 95, 649–655 (1996). https://doi.org/10.1016/0377-2217(95)00300-2

    Article  MATH  Google Scholar 

  83. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986). https://doi.org/10.1016/S0165-0114(86)80034-3

    Article  MATH  Google Scholar 

  84. Xu, Z.: Approaches to multiple attribute group decision making based on intuitionistic fuzzy power aggregation operators. Knowl. Based Syst. 24, 749–760 (2011). https://doi.org/10.1016/j.knosys.2011.01.011

    Article  Google Scholar 

  85. Chang, K.-H., Cheng, C.-H.: A risk assessment methodology using intuitionistic fuzzy set in FMEA. Int. J. Syst. Sci. 41, 1457–1471 (2010). https://doi.org/10.1080/00207720903353633

    Article  MathSciNet  Google Scholar 

  86. Chang, K.H., Cheng, C.H., Chang, Y.C.: Reprioritization of failures in a silane supply system using an intuitionistic fuzzy set ranking technique. Soft. Comput. 14, 285–298 (2010). https://doi.org/10.1007/s00500-009-0403-7

    Article  Google Scholar 

  87. Atanassov, K.T.: On the concept of intuitionistic fuzzy sets. In: 2012, pp. 1–16. https://doi.org/10.1007/978-3-642-29127-2_1

  88. Liu, H., You, J., Shan, M., Shao, L.: Failure mode and effects analysis using intuitionistic fuzzy hybrid TOPSIS approach. Soft Comput. 19, 1085–1098 (2015). https://doi.org/10.1007/s00500-014-1321-x

    Article  Google Scholar 

  89. Szmidt, E.: Introduction. In: Distances and similarities in intuitionistic fuzzy sets. Studies in Fuzziness and Soft Computing, vol. 307. Springer, Cham (2014)

    Book  Google Scholar 

  90. Xu, Z., Yager, R.R.: Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen. Syst. 35, 417–433 (2006). https://doi.org/10.1080/03081070600574353

    Article  MathSciNet  MATH  Google Scholar 

  91. Wang, W., Liu, X.: Intuitionistic fuzzy information aggregation using einstein operations. IEEE Trans. Fuzzy Syst. 20, 923–938 (2012). https://doi.org/10.1109/TFUZZ.2012.2189405

    Article  Google Scholar 

  92. Xu, Z., Zhao, N.: Information fusion for intuitionistic fuzzy decision making: an overview. Inf. Fusion 28, 10–23 (2016). https://doi.org/10.1016/j.inffus.2015.07.001

    Article  Google Scholar 

  93. Xu, Z.: Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 15, 1179–1187 (2007)

    Article  Google Scholar 

  94. Zeng, S.: The intuitionistic fuzzy ordered weighted averaging-weighted average operator and its application in financial decision making. World Acad. Sci. Eng. Technol. 6, 541–547 (2012)

    Google Scholar 

  95. Boran, F.E., Genç, S., Kurt, M., Akay, D.: A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Expert Syst. Appl. 36, 11363–11368 (2009). https://doi.org/10.1016/j.eswa.2009.03.039

    Article  Google Scholar 

  96. Anzilli, L., Facchinetti, G.: A New Proposal of Defuzzification of Intuitionistic Fuzzy Quantities, pp. 185–195. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26211-6_16

    Google Scholar 

  97. Onisawa, T.: Subjective analysis of system reliability and its analyzer. Fuzzy Sets Syst. 83, 249–269 (1996). https://doi.org/10.1016/0165-0114(95)00381-9

    Article  MathSciNet  Google Scholar 

  98. Onisawa, T.: A representation of human reliability using fuzzy concepts. Inf. Sci. (Ny) 45, 153–173 (1988). https://doi.org/10.1016/0020-0255(88)90038-2

    Article  Google Scholar 

  99. Kabir, S., Yazdi, M., Aizpurua, J.I., Papadopoulos, Y.: Uncertainty-aware dynamic reliability analysis framework for complex systems. IEEE Access. 6, 29499–29515 (2018). https://doi.org/10.1109/ACCESS.2018.2843166

    Article  Google Scholar 

  100. Vesely, W.E., Stamatelatos, M., Dugan, J., Fragola, J., Minarick, J.,Railsback, J. : Fault tree handbook with aerospace applications (2002)

  101. Cheok, M.C., Parry, G.W., Sherry, R.R.: Use of importance measures in risk-informed regulatory applications. Reliab. Eng. Syst. Saf. 60, 213–226 (1998). https://doi.org/10.1016/S0951-8320(97)00144-0

    Article  Google Scholar 

  102. Yazdi, M., Korhan, O., Daneshvar, S.: Application of fuzzy fault tree analysis based on modified fuzzy AHP and fuzzy TOPSIS for fire and explosion in process industry. Int. J. Occup. Saf. Ergon. (2018). https://doi.org/10.1080/10803548.2018.1454636

    Google Scholar 

  103. Nedjati, A., Izbirak, G., Arkat, J.: Bi-objective covering tour location routing problem with replenishment at intermediate depots: formulation and meta-heuristics. Comput. Ind. Eng. 110, 191–206 (2017). https://doi.org/10.1016/J.CIE.2017.06.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Yazdi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazdi, M., Soltanali, H. Knowledge acquisition development in failure diagnosis analysis as an interactive approach. Int J Interact Des Manuf 13, 193–210 (2019). https://doi.org/10.1007/s12008-018-0504-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-018-0504-6

Keywords

Navigation