Abstract
Chemical process plants, especially the oil and gas plants operating under severe processing conditions and dealing with hazardous materials, are susceptible to catastrophic accidents. Thus safety risk assessment is vital in designing effective strategies for preventing and mitigating potential accidents. Fault tree analysis (FTA) is a well-known technique to analyze the risks related to a specific system. In the conventional FTA, the ambiguities and uncertainties of basic events (BEs) cannot be handled effectively. Therefore, employing fuzzy set theory helps probabilistic estimation of BEs and subsequently the top event (TE). This study presents an integrated approach to fuzzy set theory and FTA for handling uncertainty in the risk analysis of chemical process plants. In this context, the worst case scenario based on a qualitative risk analysis is selected first and then the fuzzy FTA is established. Finally, different fuzzy aggregation and defuzzification approaches are employed to obtain the probability of each BE and TE, the output of each approach is compared to the occurrence probability of TE, and the critical BEs are ranked. The proposed methodology is applied to the fuzzy probabilistic analysis of hydrocarbon release in the BP tragic accident of March 2005. The results indicate that the proposed approach is very effective in risk analysis considering uncertainty reduction or handling.
Similar content being viewed by others
References
S. Kabir, An overview of fault tree analysis and its application in model based dependability analysis. Expert Syst. Appl. 77, 114–135 (2017). https://doi.org/10.1016/j.eswa.2017.01.058
M. Yazdi, S. Kabir, A fuzzy Bayesian network approach for risk analysis in process industries. Process Saf. Environ. Prot. 111, 507–519 (2017). https://doi.org/10.1016/j.psep.2017.08.015
E. Ruijters, M. Stoelinga, Fault tree analysis: a survey of the state-of-the-art in modeling, analysis and tools. Comput. Sci. Rev. 15, 29–62 (2015). https://doi.org/10.1016/j.cosrev.2015.03.001
L. Zadeh, Fuzzy sets. Inf. Control. 8, 338–353 (1965). https://doi.org/10.1109/2.53
K.W. Lee, F.A. Tillman, J.J. Higgins, A literature survey of the human reliability component in a man–machine system. IEEE Trans. Reliab. 37, 24–34 (1988). https://doi.org/10.1109/24.3708
R. Ferdous, F. Khan, R. Sadiq, P. Amyotte, B. Veitch, Fault and event tree analyses for process systems risk analysis: uncertainty handling formulations. Risk Anal. 31, 86–107 (2011). https://doi.org/10.1111/j.1539-6924.2010.01475.x
R. Ferdous, F. Khan, R. Sadiq, P. Amyotte, B. Veitch, Handling data uncertainties in event tree analysis. Process Saf. Environ. Prot. 87, 283–292 (2009). https://doi.org/10.1016/j.psep.2009.07.003
P.V. Suresh, A.K. Babar, V.V. Raj, Uncertainty in fault tree analysis: a fuzzy approach. Fuzzy Sets Syst. 83, 135–141 (1996). https://doi.org/10.1016/0165-0114(95)00386-X
J. Wang, J.B. Yang, P. Sen, Safety analysis and synthesis using fuzzy sets and evidential reasoning. Reliab. Eng. Syst. Saf. 47, 103–118 (1995). https://doi.org/10.1016/0951-8320(94)00053-Q
K.-Y. Cai, C. Kai-Yuan, System failure engineering and fuzzy methodology: an introductory overview. Fuzzy Sets Syst. 83, 113–133 (1996). https://doi.org/10.1016/0165-0114(95)00385-1
G.-S. Liang, M.-J.J. Wang, Fuzzy fault-tree analysis using failure possibility. Microelectron. Reliab. 33, 583–597 (1993). https://doi.org/10.1016/0026-2714(93)90326-T
I.D. Walker, J.R. Cavallaro, Failure mode analysis for a hazardous waste clean-up manipulator. Reliab. Eng. Syst. Saf. 53, 277–290 (1996). https://doi.org/10.1016/S0951-8320(96)00055-5
C. Preyssl, Safety risk assessment and management-the ESA approach. Reliab. Eng. Syst. Saf. 49, 303–309 (1995). https://doi.org/10.1016/0951-8320(95)00047-6
I.L. Johansen, M. Rausand, Ambiguity in risk assessment. Saf. Sci. 80, 243–251 (2015). https://doi.org/10.1016/j.ssci.2015.07.028
A. Mentes, I.H. Helvacioglu, An application of fuzzy fault tree analysis for spread mooring systems. Ocean Eng. 38, 285–294 (2011). https://doi.org/10.1016/j.oceaneng.2010.11.003
M. Celik, S.M. Lavasani, J. Wang, A risk-based modelling approach to enhance shipping accident investigation. Saf. Sci. 48, 18–27 (2010). https://doi.org/10.1016/j.ssci.2009.04.007
S.M. Lavasani, N. Ramzali, F. Sabzalipour, E. Akyuz, Utilisation of fuzzy fault tree analysis (FFTA) for quantified risk analysis of leakage in abandoned oil and natural-gas wells. Ocean Eng. 108, 729–737 (2015). https://doi.org/10.1016/j.oceaneng.2015.09.008
S.M. Lavasani, A. Zendegani, M. Celik, An extension to fuzzy fault tree analysis (FFTA) application in petrochemical process industry. Process Saf. Environ. Prot. 93, 75–88 (2015). https://doi.org/10.1016/j.psep.2014.05.001
M.R. Miri Lavasani, J. Wang, Z. Yang, J. Finlay, Application of fuzzy fault tree analysis on oil and gas offshore pipelines. Int. J. Mar. Sci. Eng. 1, 29–42 (2011). http://www.sid.ir/en/VEWSSID/J_pdf/1035520110104.pdf
M. Yazdi, F. Nikfar, M. Nasrabadi, Failure probability analysis by employing fuzzy fault tree analysis. Int. J. Syst. Assur. Eng. Manag. (2017). https://doi.org/10.1007/s13198-017-0583-y
R. Ferdous, F. Khan, B. Veitch, P.R. Amyotte, Methodology for computer aided fuzzy fault tree analysis. Process Saf. Environ. Prot. 87, 217–226 (2009). https://doi.org/10.1016/j.psep.2009.04.004
L. Shi, J. Shuai, K. Xu, Fuzzy fault tree assessment based on improved AHP for fire and explosion accidents for steel oil storage tanks. J. Hazard. Mater. 278, 529–538 (2014). https://doi.org/10.1016/j.jhazmat.2014.06.034
H.K. Chan, X. Wang, Fuzzy extent analysis for food risk assessment, in Fuzzy Hierarchical Model Risk Assess (Springer London, London, 2013), pp. 89–114. https://doi.org/10.1007/978-1-4471-5043-5_6
Y. Liu, Z.P. Fan, Y. Yuan, H. Li, A FTA-based method for risk decision-making in emergency response. Comput. Oper. Res. 42, 49–57 (2014). https://doi.org/10.1016/j.cor.2012.08.015
S. Rajakarunakaran, A. Maniram Kumar, V. Arumuga Prabhu, Applications of fuzzy faulty tree analysis and expert elicitation for evaluation of risks in LPG refuelling station. J. Loss Prev. Process Ind. 33, 109–123 (2015). https://doi.org/10.1016/j.jlp.2014.11.016
M. Rausand, Risk Assessment: Theory, Methods, and Applications (Wiley, Hoboken, 2011)
M. Modarres, Risk Analysis in Engineering: Techniques, Tools, and Trends (Taylor & Francis, Boca Raton, 2006)
B.M. Ayyub, Risk Analysis in Engineering and Economics, 2nd edn. (2014), https://books.google.com.my/books?id=71XOBQAAQBAJ
M. Haddara, F.I. Khan, L. Krishnasamy, A new methodology for risk-based availability analysis. IEEE Trans. Reliab. 57, 103–112 (2008). https://doi.org/10.1109/TR.2007.911248
N. Khakzad, F. Khan, P. Amyotte, Safety analysis in process facilities: comparison of fault tree and Bayesian network approaches. Reliab. Eng. Syst. Saf. 96, 925–932 (2011). https://doi.org/10.1016/j.ress.2011.03.012
C.-T. Lin, M.-J.J. Wang, Hybrid fault tree analysis using fuzzy sets fFL (X). Reliab. Eng. Syst. Saf. 58, 205–213 (1997). https://doi.org/10.1016/S0951-8320(97)00072-0
H. Pan, W. Yun, Fault tree analysis with fuzzy gates. Comput. Ind. Eng. 8, 3–4 (1997). https://doi.org/10.1016/S0360-8352(97)00195-2
M. Yazdi, An extension of fuzzy improved risk graph (FIRG) and fuzzy analytical hierarchy process (FAHP) for determination of chemical complex safety integrity levels (SILs). Int. J. Occup. Saf. Ergon. (2017). https://doi.org/10.1080/10803548.2017.1419654
E. Zarei, A. Azadeh, N. Khakzad, M.M. Aliabadi, I. Mohammadfam, Dynamic safety assessment of natural gas stations using Bayesian network. J. Hazard. Mater. 321, 830–840 (2017). https://doi.org/10.1016/j.jhazmat.2016.09.074
Y. Dutuit, A. Rauzy, Efficient algorithms to assess component and gate importance in fault tree analysis. Reliab. Eng. Syst. Saf. 72, 213–222 (2001). https://doi.org/10.1016/S0951-8320(01)00004-7
M. Rausand, A. Hoyland, System Reliability Theory: Models, Statistical Methods, and Applications (2004), p. 664. https://doi.org/10.1109/wescon.1996.554026.
T.J. Ross, Fuzzy Logic with Engineering Applications (2009). https://doi.org/10.1002/9781119994374
N. Ramzali, M.R.M. Lavasani, J. Ghodousi, Safety barriers analysis of offshore drilling system by employing fuzzy event tree analysis. Saf. Sci. 78, 49–59 (2015). https://doi.org/10.1016/j.ssci.2015.04.004
F. Yan, K. Xu, X. Yao, Y. Li, Fuzzy Bayesian network-bow-tie analysis of gas leakage during biomass gasification. PLoS ONE 11, e0160045 (2016). https://doi.org/10.1371/journal.pone.0160045
M. Gul, A.F. Guneri, A fuzzy multi criteria risk assessment based on decision matrix technique: a case study for aluminum industry. J. Loss Prev. Process Ind. 40, 89–100 (2016). https://doi.org/10.1016/j.jlp.2015.11.023
J.J. Buckley, Fuzzy hierarchical analysis. Fuzzy Sets Syst. 17, 233–247 (1985). https://doi.org/10.1016/0165-0114(85)90090-9
D.-Y. Chang, Applications of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res. 95, 649–655 (1996). https://doi.org/10.1016/0377-2217(95)00300-2
A. Altunkaynak, M. Özger, M. Çakmakcı, Fuzzy logic modeling of the dissolved oxygen fluctuations in Golden Horn. Ecol. Model. 189, 436–446 (2005). https://doi.org/10.1016/j.ecolmodel.2005.03.007
M. Mohsendokht, Risk assessment of uranium hexafluoride release from a uranium conversion facility by using a fuzzy approach. J. Loss Prev. Process Ind. 45, 217–228 (2017). https://doi.org/10.1016/j.jlp.2017.01.004
Y. Duan, J. Zhao, J. Chen, G. Bai, A risk matrix analysis method based on potential risk influence: a case study on cryogenic liquid hydrogen filling system. Process Saf. Environ. Prot. 102, 277–287 (2016). https://doi.org/10.1016/j.psep.2016.03.022
B.M. Ayyub, G.J. Klir, Uncertainty Modeling and Analysis in Engineering and the Sciences (2006). https://doi.org/10.1201/9781420011456
T.L. Saaty, M.S. Ozdemir, Why the magic number seven plus or minus two. Math. Comput. Model. 38, 233–244 (2003). https://doi.org/10.1016/S0895-7177(03)90083-5
J.H. Purba, J. Lu, G. Zhang, W. Pedrycz, A fuzzy reliability assessment of basic events of fault trees through qualitative data processing. Fuzzy Sets Syst. 243, 50–69 (2014). https://doi.org/10.1016/j.fss.2013.06.009
K.T. Atanassov, On the Concept of Intuitionistic Fuzzy Sets (2012), pp. 1–16. https://doi.org/10.1007/978-3-642-29127-2_1
A.S. Markowski, M.S. Mannan, Fuzzy risk matrix. J. Hazard. Mater. 159, 152–157 (2008). https://doi.org/10.1016/j.jhazmat.2008.03.055
M. Yazdi, The application of bow-tie method in hydrogen sulfide risk management using layer of protection analysis (LOPA). J. Fail. Anal. Prev. 17, 291–303 (2017). https://doi.org/10.1007/s11668-017-0247-x
A. Mardani, A. Jusoh, E.K. Zavadskas, Fuzzy multiple criteria decision-making techniques and applications—two decades review from 1994 to 2014. Expert Syst. Appl. 42(2015), 4126–4148 (2015). https://doi.org/10.1016/j.eswa.2015.01.003
R. Ferdous, F. Khan, R. Sadiq, P. Amyotte, B. Veitch, Analyzing system safety and risks under uncertainty using a bow-tie diagram: an innovative approach. Process Saf. Environ. Prot. 91, 1–18 (2013). https://doi.org/10.1016/j.psep.2011.08.010
W. Pedrycz, Why triangular membership functions? Fuzzy Sets Syst. 64, 21–30 (1994). https://doi.org/10.1016/0165-0114(94)90003-5
F. Aqlan, E. Mustafa, Ali, Integrating lean principles and fuzzy bow-tie analysis for risk assessment in chemical industry. J. Loss Prev. Process Ind. 29, 39–48 (2014). https://doi.org/10.1016/j.jlp.2014.01.006
A. Ishikawa, M. Amagasa, T. Shiga, G. Tomizawa, R. Tatsuta, H. Mieno, The max–min Delphi method and fuzzy Delphi method via fuzzy integration. Fuzzy Sets Syst. 55, 241–253 (1993). https://doi.org/10.1016/0165-0114(93)90251-C
Hsi-Mei Hsu, Chen-Tung Chen, Aggregation of fuzzy opinions under group decision making. Fuzzy Sets Syst. 79, 279–285 (1996). https://doi.org/10.1016/0165-0114(95)00185-9
M. Yazdi, S. Daneshvar, H. Setareh, An extension to fuzzy developed failure mode and effects analysis (FDFMEA) application for aircraft landing system. Saf. Sci. 98, 113–123 (2017). https://doi.org/10.1016/j.ssci.2017.06.009
A. Kaufmann, M.M. Gupta, Introduction to Fuzzy Arithmetic: Theory and Applications (Van Nostrand Reinhold Co, New York, 1985)
T. Onisawa, An application of fuzzy concepts to modelling of reliability analysis. Fuzzy Sets Syst. 37, 267–286 (1990). https://doi.org/10.1016/0165-0114(90)90026-3
CSB, Anatomy of a disaster, in Safety Videos 2005–2008 (2008)
CSB, Investigation report: refinery explosion and fire, BP Texas city incident final investigation report (2007)
BP, Fatal accident investigation report, final report, Texas City (2005), http://www.bp.com/liveassets/bp%0Ainternet/globalbp/STAGING/globalassets/downloads/T/texas%0Acityinvestigationreport.pdf
F.I. Khan, P.R. Amyotte, Modeling of BP Texas City refinery incident. J. Loss Prev. Process Ind. 20, 387–395 (2007). https://doi.org/10.1016/j.jlp.2007.04.037
M. Kalantarnia, F. Khan, K. Hawboldt, Modelling of BP Texas City refinery accident using dynamic risk assessment approach. Process Saf. Environ. Prot. 88, 191–199 (2010). https://doi.org/10.1016/j.psep.2010.01.004
X. Yang, W.J. Rogers, M.S. Mannan, Uncertainty reduction for improved mishap probability prediction: application to level control of distillation unit. J. Loss Prev. Process Ind. 23, 149–156 (2010). https://doi.org/10.1016/j.jlp.2009.07.006
M. Yazdi, Hybrid probabilistic risk assessment using fuzzy FTA and fuzzy AHP in a process industry. J. Fail. Anal. Prev. 17, 756–764 (2017). https://doi.org/10.1007/s11668-017-0305-4
I. Mohammadfam, E. Zarei, Safety risk modeling and major accidents analysis of hydrogen and natural gas releases: a comprehensive risk analysis framework. Int. J. Hydrogen Energy 40, 13653–13663 (2015). https://doi.org/10.1016/j.ijhydene.2015.07.117
E. Zarei, A. Azadeh, M.M. Aliabadi, I. Mohammadfam, Dynamic safety risk modeling of process systems using bayesian network. Process Saf. Prog. (2017). https://doi.org/10.1002/prs.11889
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yazdi, M., Zarei, E. Uncertainty Handling in the Safety Risk Analysis: An Integrated Approach Based on Fuzzy Fault Tree Analysis. J Fail. Anal. and Preven. 18, 392–404 (2018). https://doi.org/10.1007/s11668-018-0421-9
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11668-018-0421-9