Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Uncertainty Handling in the Safety Risk Analysis: An Integrated Approach Based on Fuzzy Fault Tree Analysis

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Chemical process plants, especially the oil and gas plants operating under severe processing conditions and dealing with hazardous materials, are susceptible to catastrophic accidents. Thus safety risk assessment is vital in designing effective strategies for preventing and mitigating potential accidents. Fault tree analysis (FTA) is a well-known technique to analyze the risks related to a specific system. In the conventional FTA, the ambiguities and uncertainties of basic events (BEs) cannot be handled effectively. Therefore, employing fuzzy set theory helps probabilistic estimation of BEs and subsequently the top event (TE). This study presents an integrated approach to fuzzy set theory and FTA for handling uncertainty in the risk analysis of chemical process plants. In this context, the worst case scenario based on a qualitative risk analysis is selected first and then the fuzzy FTA is established. Finally, different fuzzy aggregation and defuzzification approaches are employed to obtain the probability of each BE and TE, the output of each approach is compared to the occurrence probability of TE, and the critical BEs are ranked. The proposed methodology is applied to the fuzzy probabilistic analysis of hydrocarbon release in the BP tragic accident of March 2005. The results indicate that the proposed approach is very effective in risk analysis considering uncertainty reduction or handling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Kabir, An overview of fault tree analysis and its application in model based dependability analysis. Expert Syst. Appl. 77, 114–135 (2017). https://doi.org/10.1016/j.eswa.2017.01.058

    Article  Google Scholar 

  2. M. Yazdi, S. Kabir, A fuzzy Bayesian network approach for risk analysis in process industries. Process Saf. Environ. Prot. 111, 507–519 (2017). https://doi.org/10.1016/j.psep.2017.08.015

    Article  Google Scholar 

  3. E. Ruijters, M. Stoelinga, Fault tree analysis: a survey of the state-of-the-art in modeling, analysis and tools. Comput. Sci. Rev. 15, 29–62 (2015). https://doi.org/10.1016/j.cosrev.2015.03.001

    Article  Google Scholar 

  4. L. Zadeh, Fuzzy sets. Inf. Control. 8, 338–353 (1965). https://doi.org/10.1109/2.53

    Article  Google Scholar 

  5. K.W. Lee, F.A. Tillman, J.J. Higgins, A literature survey of the human reliability component in a man–machine system. IEEE Trans. Reliab. 37, 24–34 (1988). https://doi.org/10.1109/24.3708

    Article  Google Scholar 

  6. R. Ferdous, F. Khan, R. Sadiq, P. Amyotte, B. Veitch, Fault and event tree analyses for process systems risk analysis: uncertainty handling formulations. Risk Anal. 31, 86–107 (2011). https://doi.org/10.1111/j.1539-6924.2010.01475.x

    Article  Google Scholar 

  7. R. Ferdous, F. Khan, R. Sadiq, P. Amyotte, B. Veitch, Handling data uncertainties in event tree analysis. Process Saf. Environ. Prot. 87, 283–292 (2009). https://doi.org/10.1016/j.psep.2009.07.003

    Article  Google Scholar 

  8. P.V. Suresh, A.K. Babar, V.V. Raj, Uncertainty in fault tree analysis: a fuzzy approach. Fuzzy Sets Syst. 83, 135–141 (1996). https://doi.org/10.1016/0165-0114(95)00386-X

    Article  Google Scholar 

  9. J. Wang, J.B. Yang, P. Sen, Safety analysis and synthesis using fuzzy sets and evidential reasoning. Reliab. Eng. Syst. Saf. 47, 103–118 (1995). https://doi.org/10.1016/0951-8320(94)00053-Q

    Article  Google Scholar 

  10. K.-Y. Cai, C. Kai-Yuan, System failure engineering and fuzzy methodology: an introductory overview. Fuzzy Sets Syst. 83, 113–133 (1996). https://doi.org/10.1016/0165-0114(95)00385-1

    Article  Google Scholar 

  11. G.-S. Liang, M.-J.J. Wang, Fuzzy fault-tree analysis using failure possibility. Microelectron. Reliab. 33, 583–597 (1993). https://doi.org/10.1016/0026-2714(93)90326-T

    Article  Google Scholar 

  12. I.D. Walker, J.R. Cavallaro, Failure mode analysis for a hazardous waste clean-up manipulator. Reliab. Eng. Syst. Saf. 53, 277–290 (1996). https://doi.org/10.1016/S0951-8320(96)00055-5

    Article  Google Scholar 

  13. C. Preyssl, Safety risk assessment and management-the ESA approach. Reliab. Eng. Syst. Saf. 49, 303–309 (1995). https://doi.org/10.1016/0951-8320(95)00047-6

    Article  Google Scholar 

  14. I.L. Johansen, M. Rausand, Ambiguity in risk assessment. Saf. Sci. 80, 243–251 (2015). https://doi.org/10.1016/j.ssci.2015.07.028

    Article  Google Scholar 

  15. A. Mentes, I.H. Helvacioglu, An application of fuzzy fault tree analysis for spread mooring systems. Ocean Eng. 38, 285–294 (2011). https://doi.org/10.1016/j.oceaneng.2010.11.003

    Article  Google Scholar 

  16. M. Celik, S.M. Lavasani, J. Wang, A risk-based modelling approach to enhance shipping accident investigation. Saf. Sci. 48, 18–27 (2010). https://doi.org/10.1016/j.ssci.2009.04.007

    Article  Google Scholar 

  17. S.M. Lavasani, N. Ramzali, F. Sabzalipour, E. Akyuz, Utilisation of fuzzy fault tree analysis (FFTA) for quantified risk analysis of leakage in abandoned oil and natural-gas wells. Ocean Eng. 108, 729–737 (2015). https://doi.org/10.1016/j.oceaneng.2015.09.008

    Article  Google Scholar 

  18. S.M. Lavasani, A. Zendegani, M. Celik, An extension to fuzzy fault tree analysis (FFTA) application in petrochemical process industry. Process Saf. Environ. Prot. 93, 75–88 (2015). https://doi.org/10.1016/j.psep.2014.05.001

    Article  Google Scholar 

  19. M.R. Miri Lavasani, J. Wang, Z. Yang, J. Finlay, Application of fuzzy fault tree analysis on oil and gas offshore pipelines. Int. J. Mar. Sci. Eng. 1, 29–42 (2011). http://www.sid.ir/en/VEWSSID/J_pdf/1035520110104.pdf

  20. M. Yazdi, F. Nikfar, M. Nasrabadi, Failure probability analysis by employing fuzzy fault tree analysis. Int. J. Syst. Assur. Eng. Manag. (2017). https://doi.org/10.1007/s13198-017-0583-y

    Google Scholar 

  21. R. Ferdous, F. Khan, B. Veitch, P.R. Amyotte, Methodology for computer aided fuzzy fault tree analysis. Process Saf. Environ. Prot. 87, 217–226 (2009). https://doi.org/10.1016/j.psep.2009.04.004

    Article  Google Scholar 

  22. L. Shi, J. Shuai, K. Xu, Fuzzy fault tree assessment based on improved AHP for fire and explosion accidents for steel oil storage tanks. J. Hazard. Mater. 278, 529–538 (2014). https://doi.org/10.1016/j.jhazmat.2014.06.034

    Article  Google Scholar 

  23. H.K. Chan, X. Wang, Fuzzy extent analysis for food risk assessment, in Fuzzy Hierarchical Model Risk Assess (Springer London, London, 2013), pp. 89–114. https://doi.org/10.1007/978-1-4471-5043-5_6

  24. Y. Liu, Z.P. Fan, Y. Yuan, H. Li, A FTA-based method for risk decision-making in emergency response. Comput. Oper. Res. 42, 49–57 (2014). https://doi.org/10.1016/j.cor.2012.08.015

    Article  Google Scholar 

  25. S. Rajakarunakaran, A. Maniram Kumar, V. Arumuga Prabhu, Applications of fuzzy faulty tree analysis and expert elicitation for evaluation of risks in LPG refuelling station. J. Loss Prev. Process Ind. 33, 109–123 (2015). https://doi.org/10.1016/j.jlp.2014.11.016

    Article  Google Scholar 

  26. M. Rausand, Risk Assessment: Theory, Methods, and Applications (Wiley, Hoboken, 2011)

    Book  Google Scholar 

  27. M. Modarres, Risk Analysis in Engineering: Techniques, Tools, and Trends (Taylor & Francis, Boca Raton, 2006)

    Google Scholar 

  28. B.M. Ayyub, Risk Analysis in Engineering and Economics, 2nd edn. (2014), https://books.google.com.my/books?id=71XOBQAAQBAJ

  29. M. Haddara, F.I. Khan, L. Krishnasamy, A new methodology for risk-based availability analysis. IEEE Trans. Reliab. 57, 103–112 (2008). https://doi.org/10.1109/TR.2007.911248

    Article  Google Scholar 

  30. N. Khakzad, F. Khan, P. Amyotte, Safety analysis in process facilities: comparison of fault tree and Bayesian network approaches. Reliab. Eng. Syst. Saf. 96, 925–932 (2011). https://doi.org/10.1016/j.ress.2011.03.012

    Article  Google Scholar 

  31. C.-T. Lin, M.-J.J. Wang, Hybrid fault tree analysis using fuzzy sets fFL (X). Reliab. Eng. Syst. Saf. 58, 205–213 (1997). https://doi.org/10.1016/S0951-8320(97)00072-0

    Article  Google Scholar 

  32. H. Pan, W. Yun, Fault tree analysis with fuzzy gates. Comput. Ind. Eng. 8, 3–4 (1997). https://doi.org/10.1016/S0360-8352(97)00195-2

    Google Scholar 

  33. M. Yazdi, An extension of fuzzy improved risk graph (FIRG) and fuzzy analytical hierarchy process (FAHP) for determination of chemical complex safety integrity levels (SILs). Int. J. Occup. Saf. Ergon. (2017). https://doi.org/10.1080/10803548.2017.1419654

    Google Scholar 

  34. E. Zarei, A. Azadeh, N. Khakzad, M.M. Aliabadi, I. Mohammadfam, Dynamic safety assessment of natural gas stations using Bayesian network. J. Hazard. Mater. 321, 830–840 (2017). https://doi.org/10.1016/j.jhazmat.2016.09.074

    Article  Google Scholar 

  35. Y. Dutuit, A. Rauzy, Efficient algorithms to assess component and gate importance in fault tree analysis. Reliab. Eng. Syst. Saf. 72, 213–222 (2001). https://doi.org/10.1016/S0951-8320(01)00004-7

    Article  Google Scholar 

  36. M. Rausand, A. Hoyland, System Reliability Theory: Models, Statistical Methods, and Applications (2004), p. 664. https://doi.org/10.1109/wescon.1996.554026.

  37. T.J. Ross, Fuzzy Logic with Engineering Applications (2009). https://doi.org/10.1002/9781119994374

    Google Scholar 

  38. N. Ramzali, M.R.M. Lavasani, J. Ghodousi, Safety barriers analysis of offshore drilling system by employing fuzzy event tree analysis. Saf. Sci. 78, 49–59 (2015). https://doi.org/10.1016/j.ssci.2015.04.004

    Article  Google Scholar 

  39. F. Yan, K. Xu, X. Yao, Y. Li, Fuzzy Bayesian network-bow-tie analysis of gas leakage during biomass gasification. PLoS ONE 11, e0160045 (2016). https://doi.org/10.1371/journal.pone.0160045

    Article  Google Scholar 

  40. M. Gul, A.F. Guneri, A fuzzy multi criteria risk assessment based on decision matrix technique: a case study for aluminum industry. J. Loss Prev. Process Ind. 40, 89–100 (2016). https://doi.org/10.1016/j.jlp.2015.11.023

    Article  Google Scholar 

  41. J.J. Buckley, Fuzzy hierarchical analysis. Fuzzy Sets Syst. 17, 233–247 (1985). https://doi.org/10.1016/0165-0114(85)90090-9

    Article  Google Scholar 

  42. D.-Y. Chang, Applications of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res. 95, 649–655 (1996). https://doi.org/10.1016/0377-2217(95)00300-2

    Article  Google Scholar 

  43. A. Altunkaynak, M. Özger, M. Çakmakcı, Fuzzy logic modeling of the dissolved oxygen fluctuations in Golden Horn. Ecol. Model. 189, 436–446 (2005). https://doi.org/10.1016/j.ecolmodel.2005.03.007

    Article  Google Scholar 

  44. M. Mohsendokht, Risk assessment of uranium hexafluoride release from a uranium conversion facility by using a fuzzy approach. J. Loss Prev. Process Ind. 45, 217–228 (2017). https://doi.org/10.1016/j.jlp.2017.01.004

    Article  Google Scholar 

  45. Y. Duan, J. Zhao, J. Chen, G. Bai, A risk matrix analysis method based on potential risk influence: a case study on cryogenic liquid hydrogen filling system. Process Saf. Environ. Prot. 102, 277–287 (2016). https://doi.org/10.1016/j.psep.2016.03.022

    Article  Google Scholar 

  46. B.M. Ayyub, G.J. Klir, Uncertainty Modeling and Analysis in Engineering and the Sciences (2006). https://doi.org/10.1201/9781420011456

  47. T.L. Saaty, M.S. Ozdemir, Why the magic number seven plus or minus two. Math. Comput. Model. 38, 233–244 (2003). https://doi.org/10.1016/S0895-7177(03)90083-5

    Article  Google Scholar 

  48. J.H. Purba, J. Lu, G. Zhang, W. Pedrycz, A fuzzy reliability assessment of basic events of fault trees through qualitative data processing. Fuzzy Sets Syst. 243, 50–69 (2014). https://doi.org/10.1016/j.fss.2013.06.009

    Article  Google Scholar 

  49. K.T. Atanassov, On the Concept of Intuitionistic Fuzzy Sets (2012), pp. 1–16. https://doi.org/10.1007/978-3-642-29127-2_1

  50. A.S. Markowski, M.S. Mannan, Fuzzy risk matrix. J. Hazard. Mater. 159, 152–157 (2008). https://doi.org/10.1016/j.jhazmat.2008.03.055

    Article  Google Scholar 

  51. M. Yazdi, The application of bow-tie method in hydrogen sulfide risk management using layer of protection analysis (LOPA). J. Fail. Anal. Prev. 17, 291–303 (2017). https://doi.org/10.1007/s11668-017-0247-x

    Article  Google Scholar 

  52. A. Mardani, A. Jusoh, E.K. Zavadskas, Fuzzy multiple criteria decision-making techniques and applications—two decades review from 1994 to 2014. Expert Syst. Appl. 42(2015), 4126–4148 (2015). https://doi.org/10.1016/j.eswa.2015.01.003

    Article  Google Scholar 

  53. R. Ferdous, F. Khan, R. Sadiq, P. Amyotte, B. Veitch, Analyzing system safety and risks under uncertainty using a bow-tie diagram: an innovative approach. Process Saf. Environ. Prot. 91, 1–18 (2013). https://doi.org/10.1016/j.psep.2011.08.010

    Article  Google Scholar 

  54. W. Pedrycz, Why triangular membership functions? Fuzzy Sets Syst. 64, 21–30 (1994). https://doi.org/10.1016/0165-0114(94)90003-5

    Article  Google Scholar 

  55. F. Aqlan, E. Mustafa, Ali, Integrating lean principles and fuzzy bow-tie analysis for risk assessment in chemical industry. J. Loss Prev. Process Ind. 29, 39–48 (2014). https://doi.org/10.1016/j.jlp.2014.01.006

    Article  Google Scholar 

  56. A. Ishikawa, M. Amagasa, T. Shiga, G. Tomizawa, R. Tatsuta, H. Mieno, The max–min Delphi method and fuzzy Delphi method via fuzzy integration. Fuzzy Sets Syst. 55, 241–253 (1993). https://doi.org/10.1016/0165-0114(93)90251-C

    Article  Google Scholar 

  57. Hsi-Mei Hsu, Chen-Tung Chen, Aggregation of fuzzy opinions under group decision making. Fuzzy Sets Syst. 79, 279–285 (1996). https://doi.org/10.1016/0165-0114(95)00185-9

    Article  Google Scholar 

  58. M. Yazdi, S. Daneshvar, H. Setareh, An extension to fuzzy developed failure mode and effects analysis (FDFMEA) application for aircraft landing system. Saf. Sci. 98, 113–123 (2017). https://doi.org/10.1016/j.ssci.2017.06.009

    Article  Google Scholar 

  59. A. Kaufmann, M.M. Gupta, Introduction to Fuzzy Arithmetic: Theory and Applications (Van Nostrand Reinhold Co, New York, 1985)

    Google Scholar 

  60. T. Onisawa, An application of fuzzy concepts to modelling of reliability analysis. Fuzzy Sets Syst. 37, 267–286 (1990). https://doi.org/10.1016/0165-0114(90)90026-3

    Article  Google Scholar 

  61. CSB, Anatomy of a disaster, in Safety Videos 2005–2008 (2008)

  62. CSB, Investigation report: refinery explosion and fire, BP Texas city incident final investigation report (2007)

  63. BP, Fatal accident investigation report, final report, Texas City (2005), http://www.bp.com/liveassets/bp%0Ainternet/globalbp/STAGING/globalassets/downloads/T/texas%0Acityinvestigationreport.pdf

  64. F.I. Khan, P.R. Amyotte, Modeling of BP Texas City refinery incident. J. Loss Prev. Process Ind. 20, 387–395 (2007). https://doi.org/10.1016/j.jlp.2007.04.037

    Article  Google Scholar 

  65. M. Kalantarnia, F. Khan, K. Hawboldt, Modelling of BP Texas City refinery accident using dynamic risk assessment approach. Process Saf. Environ. Prot. 88, 191–199 (2010). https://doi.org/10.1016/j.psep.2010.01.004

    Article  Google Scholar 

  66. X. Yang, W.J. Rogers, M.S. Mannan, Uncertainty reduction for improved mishap probability prediction: application to level control of distillation unit. J. Loss Prev. Process Ind. 23, 149–156 (2010). https://doi.org/10.1016/j.jlp.2009.07.006

    Article  Google Scholar 

  67. M. Yazdi, Hybrid probabilistic risk assessment using fuzzy FTA and fuzzy AHP in a process industry. J. Fail. Anal. Prev. 17, 756–764 (2017). https://doi.org/10.1007/s11668-017-0305-4

    Article  Google Scholar 

  68. I. Mohammadfam, E. Zarei, Safety risk modeling and major accidents analysis of hydrogen and natural gas releases: a comprehensive risk analysis framework. Int. J. Hydrogen Energy 40, 13653–13663 (2015). https://doi.org/10.1016/j.ijhydene.2015.07.117

    Article  Google Scholar 

  69. E. Zarei, A. Azadeh, M.M. Aliabadi, I. Mohammadfam, Dynamic safety risk modeling of process systems using bayesian network. Process Saf. Prog. (2017). https://doi.org/10.1002/prs.11889

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Yazdi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazdi, M., Zarei, E. Uncertainty Handling in the Safety Risk Analysis: An Integrated Approach Based on Fuzzy Fault Tree Analysis. J Fail. Anal. and Preven. 18, 392–404 (2018). https://doi.org/10.1007/s11668-018-0421-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-018-0421-9

Keywords

Navigation