Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Framework Based on Machine Learning Approach for Prediction of the Remaining Useful Life: A Case Study of an Aviation Engine

  • Original Research Article
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

This paper provides a framework based on machine learning approach in I4.0 environment to predict the remaining useful life of an aviation engine. For illustration purpose, an industrial case study is presented which applies machine learning algorithms to analyze the data collected using the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) simulation which includes run-to-degradation data for a turbofan engine. The results obtained from the study validate the proposed framework to identify prominent features and perform sequential analysis on unstructured data for predicting the remaining useful life of an aviation engine. Six machine learning models are applied to the dataset containing four subsets: FD001, FD002, FD003 and FD004 in C-MAPSS dataset each working on different degradation conditions for turbofan engine. For FD001, random forest had the lowest RMSE (11.59), and for FD002, FD003 and FD004, the lowest RMSE was given by LGBM classifier (12.78, 7.95 and 11.04), respectively. From the findings, it is observed that LGBM performs better with higher AUC 89% and lowest RMSE. The proposed framework can be applied to a wide range of failure prediction applications. Regardless of the underlying physics, ML-based data-driven methodologies can be used to analyze a wide range of systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Ferreira, G. Gonçalves, Remaining useful life prediction and challenges: a literature review on the use of machine learning methods. J. Manuf. Syst. 63, 550–562 (2022). https://doi.org/10.1016/j.jmsy.2022.05.010

    Article  Google Scholar 

  2. R. Kunst, L. Avila, A. Binotto, E. Pignaton, S. Bampi, J. Rochol, Improving devices communication in industry 4.0 wireless networks. Eng. Appl. Artif. Intell. 83, 1–12 (2019). https://doi.org/10.1016/j.engappai.2019.04.014

    Article  Google Scholar 

  3. R. Stefanini, G.P.C. Tancredi, G. Vignali, L. Monica, Industry 4.0 and intelligent predictive maintenance: a survey about the advantages and constraints in the Italian context. J. Qual. Maint. Eng. 29(5), 37–49 (2023)

    Article  Google Scholar 

  4. T. Zonta, C.A. da Costa, R.R. da Rosa, M.J. de Lima, E.S. da Trindade, G.P. Li, Predictive maintenance in the Industry 4.0: a systematic literature review. Comput. Ind. Eng. 150, 106889 (2020). https://doi.org/10.1016/j.cie.2020.106889

    Article  Google Scholar 

  5. P.C.M. Lamim Filho, F.B. Batista, R. Pederiva, V.A.D. Silva, Electrical fault diagnosis in induction motors using local extremes analysis. J. Qual. Maint. Eng. 22(3), 321–332 (2016). https://doi.org/10.1108/JQME-07-2015-0026

    Article  Google Scholar 

  6. C. Morariu, O. Morariu, S. Raileanu, T. Borangiu, Machine learning for predictive scheduling and resource allocation in large scale manufacturing systems. Comput. Ind. 120, 103–244 (2020)

    Article  Google Scholar 

  7. B.A. Ture, A. Akbulut, A.H. Zaim et al., Stacking-based ensemble learning for remaining useful life estimation. Soft. Comput. (2023). https://doi.org/10.1007/s00500-023-08322-6

    Article  Google Scholar 

  8. J. Lee, F. Wu, W. Zhao, M. Ghaffari, L. Liao, D. Siegel, Prognostics and health management design for rotary machinery systems—reviews, methodology and applications. Mech. Syst. Signal Process. 42(1), 314–334 (2014)

    Article  Google Scholar 

  9. C. Okoh, R. Roy, J. Mehnen, L. Redding, Overview of remaining useful life prediction techniques in through-life engineering services. Proc. CIRP. 16, 158–163 (2014). https://doi.org/10.1016/j.procir.2014.02.006

    Article  Google Scholar 

  10. P. Soni, M. Anas Khan, M. Zubair, S. Kumar Garg, Multiclass classification for predicting Remaining Useful Life (RUL) of the turbofan engine. Presented at the 2021 11th International Conference on Cloud Computing, Data Science & Engineering, Confluence, pp. 1023–1028 (2021). https://doi.org/10.1109/Confluence51648.2021.9377131

  11. A. Kabir, C. Bailey, H. Lu, S. Stoyanov, A review of data-driven prognostics in power electronics. Proc. Int. Electron. Technol. 9, 189–192 (2012)

    Google Scholar 

  12. K. Abid, M. Sayed-Mouchaweh, L. Cornez, Deep ensemble approach for RUL estimation of aircraft engines, in Mediterranean Forum – Data Science Conference. MeFDATA 2020, ed. by J. Hasic Telalovic, M. Kantardzic. Communications in Computer and Information Science, vol. 1343 (Springer, Cham, 2021). https://doi.org/10.1007/978-3-030-72805-2_7

    Chapter  Google Scholar 

  13. W. Chen, C. Liu, Q. Chen et al., Multi-scale memory-enhanced method for predicting the remaining useful life of aircraft engines. Neural Comput. Appl. 35, 2225–2241 (2023). https://doi.org/10.1007/s00521-022-07378-z

    Article  Google Scholar 

  14. Y.C. Liu Y.J. Chang, S. L. Liu, S. P. Chen, Data-driven prognostics of remaining useful life for milling machine cutting tools. 2019 IEEE International Conference on Prognostics and Health Management, ICPHM 2019 (2019). https://doi.org/10.1109/ICPHM.2019.8819400

  15. R. Mohan, J.P. Roselyn, R.A. Uthra, LSTM based artificial intelligence predictive maintenance technique for availability rate and OEE improvement in a TPM implementing plant through Industry 4.0 transformation. J. Qual. Maint. Eng. 29, 763 (2023). https://doi.org/10.1108/JQME-07-2022-0041

    Article  Google Scholar 

  16. M. Mihaela, P. de Ingeborg, B. Anne, Z. Zhiguo, Dynamic predictive maintenance for multiple components using data-driven probabilistic RUL prognostics: the case of turbofan engines. Reliabil. Eng. Syst. Saf. 234, 109–199 (2023). https://doi.org/10.1016/j.ress.2023.109199

    Article  Google Scholar 

  17. Y. Raptodimos, I. Lazakis, Application of NARX neural network for predicting marine engine performance parameters. Ships Offshore Struct. 15(4), 443–452 (2020). https://doi.org/10.1080/17445302.2019.1661619

    Article  Google Scholar 

  18. A. Listou Ellefsen, E. Bjørlykhaug, V. Æsøy, S. Ushakov, H. Zhang, Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture. Reliab. Eng. Syst. Saf. 183, 240–251 (2019). https://doi.org/10.1016/j.ress.2018.11.027

    Article  Google Scholar 

  19. L. Polverino, R. Abbate, P. Manco et al., Machine learning for prognostics and health management of industrial mechanical systems and equipment: a systematic literature review. Int. J. Eng. Business Manag. 15, 118 (2023). https://doi.org/10.1177/18479790231186848

    Article  Google Scholar 

  20. P. Deng, G. Ren, W. Yuan, F. Chen, Q. Hua, An integrated framework of formal methods for interaction behaviors among industrial equipments. Microproc. Microsyst. 39(8), 15 (2015). https://doi.org/10.1016/j.micpro.2015.07.015

    Article  Google Scholar 

  21. P. Henriquez, J.B. Alonso, M.A. Ferrer, C.M. Travieso, Review of automatic fault diagnosis systems using audio and vibration signals. in IEEE Transactions on Systems, Man, and Cybernetics: Systems (vol. 44, Issue 5) (2014). https://doi.org/10.1109/TSMCC.2013.2257752

  22. J.R. Ruiz-Sarmiento, J. Monroy, F.A. Moreno, C. Galindo, J.M. Bonelo, J. Gonzalez-Jimenez, A predictive model for the maintenance of industrial machinery in the context of industry 4.0. Eng. Appl. Artif. Intell. 87, 103289 (2020)

    Article  Google Scholar 

  23. B. Schmidt, L. Wang, Predictive maintenance of machine tool linear axes: a case from manufacturing industry. Proc. Manuf. 17, 22 (2018). https://doi.org/10.1016/j.promfg.2018.10.022

    Article  Google Scholar 

  24. P. Adhikari, H.G. Rao, D.M. Buderath, Machine learning based data driven diagnostics & prognostics framework for aircraft predictive maintenance, in 10th International Symposium on NDT in Aerospace, October 24-26, 2018, Dresden, Germany (2018)

  25. C. Zhou, C.K. Tham, GraphEL: a graph-based ensemble learning method for distributed diagnostics and prognostics in the industrial internet of things, in Proceedings of the International Conference on Parallel and Distributed Systems - ICPADS, 2018-December (2019). https://doi.org/10.1109/PADSW.2018.8644943

  26. J. Li, Y. Jia, M. Niu, W. Zhu, F. Meng, Remaining useful life prediction of turbofan engines using CNN-LSTM-SAM approach. IEEE Sens. J. 23(9), 10241–10251 (2023). https://doi.org/10.1109/JSEN.2023.3261874

    Article  Google Scholar 

  27. Y. Liu, L. Liu, L. Yang, L. Hao, Y. Bao, Measuring distance using ultra-wideband radio technology enhanced by extreme gradient boosting decision tree (XGBoost). Automat. Construc. 126, 2021 (2021). https://doi.org/10.1016/j.autcon.2021.103678

    Article  Google Scholar 

  28. X. Tan, S. Mahjoubi, Q. Zhang et al., A framework for improving bridge resilience and sustainability through optimizing high-performance fiber-reinforced cementitious composites. J. Infrastruct. Preserv. Resil. 3, 18 (2022). https://doi.org/10.1186/s43065-022-00067-0

    Article  Google Scholar 

  29. Y. Liu, X. Tan, Y. Bao, Machine learning-assisted intelligent interpretation of distributed fiber optic sensor data for automated monitoring of pipeline corrosion. Measurement. 226, 114190 (2024). https://doi.org/10.1016/j.measurement.2024.114190

    Article  Google Scholar 

  30. Y. Liu, Y. Bao, Real-time remote measurement of distance using ultra-wideband (UWB) sensors. Autom. Constr. 150, 104849 (2023). https://doi.org/10.1016/j.autcon.2023.104849

    Article  Google Scholar 

  31. M. Malek, Predictive analytics: a shortcut to dependable computing, in Software Engineering for Resilient Systems: 9th International Workshop, SERENE 2017, Geneva, Switzerland, September 4–5, 2017, Proceedings 9(Springer, Cham, 2017), pp. 3–17

  32. R. Costa, P. Figueiras, R. Jardim-Gonçalves, J. Ramos-Filho, C. Lima, Semantic enrichment of product data supported by machine learning techniques, in 2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC) (IEEE, 2017), pp. 1472–1479

  33. D. Kim, S. Lee, D. Kim, An applicable predictive maintenance framework for the absence of run-to-failure data. Appl. Sci. (Switzerland). 11(11), 5180 (2021). https://doi.org/10.3390/app11115180

    Article  CAS  Google Scholar 

  34. B. Xue, Z.B. Xu, X. Huang et al., Data-driven prognostics method for turbofan engine degradation using hybrid deep neural network. J. Mech. Sci. Technol. 35, 5371–5387 (2021). https://doi.org/10.1007/s12206-021-1109-8

    Article  Google Scholar 

  35. Z. Li, Y. Wang, K.S. Wang, Intelligent predictive maintenance for fault diagnosis and prognosis in machine centers: Industry 4.0 scenario. Adv. Manuf. 5(4), 377 (2017). https://doi.org/10.1007/s40436-017-0203-8

    Article  Google Scholar 

  36. L. Ren, Y. Sun, J. Cui, L. Zhang, Bearing remaining useful life prediction based on deep autoencoder and deep neural networks. J. Manuf. Syst. 48, 4008 (2018). https://doi.org/10.1016/j.jmsy.2018.04.008

    Article  Google Scholar 

  37. B. Mrugalska, Remaining useful life as prognostic approach: a review, in Human Systems Engineering and Design, IHSED 2018, ed. by. T. Ahram, W. Karwowski, R. Taiar. Advances in Intelligent Systems and Computing (Springer, Cham, 2019), pp 876–689. https://doi.org/10.1007/978-3-030-02053-8_105

  38. O. Koca, O. T. Kaymakci, M. Mercimek, Advanced predictive maintenance with machine learning failure estimation in industrial packaging robots, in 2020 15th International Conference on Development and Application Systems, DAS 2020 - Proceedings (2020). https://doi.org/10.1109/DAS49615.2020.9108913

  39. C. Peng, Y. Chen, Q. Chen, Z. Tang, L. Li, W. Gui, A remaining useful life prognosis of turbofan engine using temporal and spatial feature fusion. Sensors (Switzerland). 21(2), 418 (2021). https://doi.org/10.3390/s21020418

    Article  Google Scholar 

  40. Z. Kang, C. Catal, B. Tekinerdogan, Remaining Useful Life (RUL) prediction of equipment in production lines using artificial neural networks. Sensors 21, 932 (2021). https://doi.org/10.3390/s21030932

    Article  PubMed  PubMed Central  Google Scholar 

  41. H. Kagermann, W. Wahlster, J. Helbig, Securing the future of german manufacturing industry: recommendations for implementing the strategic initiative industrie 40 final report of the industrie 40 working group. Acad. Sci. Eng. 678, 119–147 (2013)

    Google Scholar 

  42. J. Choi, D. An, J. Gang, J. Joo, N.H. Kim, Bayesian approach for parameter estimation in the structural analysis and prognosis. Ann. Conf. PHM Soc. (2010). https://doi.org/10.36001/phmconf.2010.v2i1.1753

    Article  Google Scholar 

  43. M. Jouin et al., Degradations analysis and aging modeling for health assessment and prognostics of PEMFC. Reliab. Eng. Syst. Saf. 148, 78–95 (2016)

    Article  Google Scholar 

  44. K.Le Son, M. Fouladirad, A. Barros, Remaining useful life estimation on the nonhomogenous gamma with noise deterioration based on Gibbs filtering: a case study, in: Proceedings of the IEEE conference on prognostics and health management (PHM) (IEEE, Denver, CO, 2012), pp. 1–6

  45. Y. Xu, Y. Sun, X. Liu, Y. Zheng, A digital-twin-assisted fault diagnosis using deep transfer learning. IEEE Access. (2019). https://doi.org/10.1109/ACCESS.2018.2890566

    Article  PubMed  PubMed Central  Google Scholar 

  46. F. Ansari, R. Glawar, W. Sihn, Prescriptive maintenance of cpps by integrating multimodal data with dynamic Bayesian networks, in Machine Learning for Cyber Physical Systems. ed. by J. Beyerer, A. Maier, O. Niggemann (Springer, Berlin, Heidelberg, 2020), pp. 1–8

    Google Scholar 

  47. A. Bousdekis, G. Mentzas, K. Hribernik, M. Lewandowski, M. von Stietencron, K.D. Thoben, A unified architecture for proactive maintenance in manufacturing enterprises. Proc. I-ESA Conf. 9, 307 (2019). https://doi.org/10.1007/978-3-030-13693-2_26

    Article  Google Scholar 

  48. Z. Liu, C. Jin, W. Jin, J. Lee, Z. Zhang, C. Peng, G. Xu, Industrial AI Enabled Prognostics for High-speed Railway Systems. 2018 IEEE International Conference on Prognostics and Health Management, ICPHM 2018 (2018). https://doi.org/10.1109/ICPHM.2018.8448431

  49. D. Divya, B. Marath, M.B. Santosh Kumar, Review of fault detection techniques for predictive maintenance. J. Qual. Maint. Eng. 29(2), 420–441 (2023). https://doi.org/10.1108/JQME-10-2020-0107

    Article  Google Scholar 

  50. S. Dong, T. Luo, Bearing degradation process prediction based on the PCA and optimized LS-SVM model. Meas. J. Int. Meas. Confed. 46(9), 3143–3152 (2013). https://doi.org/10.1016/j.measurement.2013.06.038

    Article  Google Scholar 

  51. C. Liu, L. Zhang, J. Niu, R. Yao, C. Wu, Intelligent prognostics of machining tools based on adaptive variational mode decomposition and deep learning method with attention mechanism. Neurocomputing. 417, 239–254 (2020). https://doi.org/10.1016/j.neucom.2020.06.116

    Article  Google Scholar 

  52. Y.Liu, D.K. Frederick, J.A. Decastro, J.S. Litt, W.W. Chan, User’s guide for the commercial modular aero-propulsion system simulation (C-MAPSS). Nasa/Tm, 2012–21743 (March) (2012)

  53. A. Saxena, K. Goebel, D. Simon, N. Eklund, Damage propagation modeling for aircraft engine run-to-failure simulation, in 2008 International Conference on Prognostics and Health Management, PHM 2008 (2008). https://doi.org/10.1109/PHM.2008.4711414

  54. H. Wang, D. Li, D. Li, C. Liu, X. Yang, G. Zhu, Remaining useful life prediction of aircraft turbofan engine based on random forest feature selection and multi-layer perceptron. Appl. Sci. 13, 7186 (2023). https://doi.org/10.3390/app13127186

    Article  CAS  Google Scholar 

  55. V. Mathew, T. Toby, V. Singh, B.M. Rao, M.G. Kumar, Prediction of remaining useful lifetime (RUL) of turbofan engine using machine learning, in IEEE International Conference on Circuits and Systems, ICCS 2017 (2018). https://doi.org/10.1109/ICCS1.2017.8326010

  56. R. Sibindi, R.W. Mwangi, A.G. Waititu, A boosting ensemble learning based hybrid light gradient boosting machine and extreme gradient boosting model for predicting house prices. Eng. Rep. 5(4), e12599 (2023). https://doi.org/10.1002/eng2.12599

    Article  Google Scholar 

  57. S. Antomarioni, M. Bevilacqua, D. Potena, C. Diamantini, Defining a data-driven maintenance policy: an application to an oil refinery plant. Int. J. Qual. Reliabil. Manag. 36(1), 77–97 (2019). https://doi.org/10.1108/IJQRM-01-2018-0012

    Article  Google Scholar 

  58. Peter Bühlmann, Bagging, boosting and ensemble methods, in Handbook of Computational Statistics, ed. by J.E. Gentle, W.K. Härdle, Y. Mori (Springer, Berlin, Heidelberg, 2012), pp. 985–1022. https://doi.org/10.1007/978-3-642-21551-3_33

    Chapter  Google Scholar 

  59. Z.Balogh, E. Gatial, J. Barbosa, P. Leitão, T. Matejka, Reference architecture for a collaborative predictive platform for smart maintenance in manufacturing, in INES 2018 - IEEE 22nd International Conference on Intelligent Engineering Systems, Proceedings (2018). https://doi.org/10.1109/INES.2018.8523969

  60. J. Campos, P. Sharma, M. Albano, L.L. Ferreira, M. Larrañaga, An open source framework approach to support condition monitoring and maintenance. Appl. Sci. 10(18), 6360 (2020). https://doi.org/10.3390/app10186360

    Article  CAS  Google Scholar 

  61. C. Carbery, R. Woods, A. Marshall, A bayesian network based learning system for modelling faults in large-scale manufacturing. Int. Conf. Ind. Technol. 20, 1357 (2018). https://doi.org/10.1109/ICIT.2018.8352377

    Article  Google Scholar 

  62. X. Li, Q. Ding, J.Q. Sun, Remaining useful life estimation in prognostics using deep convolution neural networks. Reliabil. Eng. Syst. Safety. 172, 11 (2018). https://doi.org/10.1016/j.ress.2017.11.021

    Article  Google Scholar 

  63. C. Zhang, P. Lim, A.K. Qin, K.C. Tan, Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2306 (2017)

    Article  PubMed  Google Scholar 

  64. G.S.Babu, P. Zhao, X.L. Li, Deep convolutional neural network based regression approach for estimation of remaining useful life, in Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), vol. 9642 (2016). https://doi.org/10.1007/978-3-319-32025-0_14

  65. U. Amin, & K.D. Kumar. Remaining useful life prediction of aircraft engines using hybrid model based on artificial intelligence techniques, in 2021 IEEE International Conference on Prognostics and Health Management, ICPHM 2021 (2021)

  66. Y. Liu, X. Zhang, W. Guo, H. Bian, Y. He, Z. Liu, Prediction of remaining useful life of turbofan engine based on optimized model, in IEEE 20th International Conference on Trust, Security and Privacy in Computing and communications (TrustCom), pp 1473–1477 (2022)

  67. C. Peng, Y. Chen, W. Gui et al., Remaining useful life prognosis of turbofan engines based on deep feature extraction and fusion. Sci. Rep. 12, 6491 (2022). https://doi.org/10.1038/s41598-022-10191-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. E. Vijay Kumar, S.K. Chaturvedi, Prioritization of maintenance tasks on industrial equipment for reliability. Int. J. Qual. Reliab. Manag. 28(1), 109–126 (2011). https://doi.org/10.1108/02656711111097571

    Article  Google Scholar 

  69. K. Wang, Y. Wang, How AI affects the future predictive maintenance: a primer of deep learning. Lect. Notes Electr. Eng. 451, 112 (2018). https://doi.org/10.1007/978-981-10-5768-7_1

    Article  Google Scholar 

  70. L. Guo, N. Li, F. Jia, Y. Lei, J. Lin, A recurrent neural network based health indicator for remaining useful life prediction of bearings. Neurocomputing 240, 45 (2017). https://doi.org/10.1016/j.neucom.2017.02.045

    Article  Google Scholar 

  71. S. Kaparthi, D. Bumblauskas, Designing predictive maintenance systems using decision tree-based machine learning techniques. Int. J. Qual. Reliabil. Manag. 37(4), 659–686 (2020). https://doi.org/10.1108/IJQRM-04-2019-0131

    Article  Google Scholar 

  72. U. Kumar, D. Galar, A. Parida, C. Stenström, L. Berges, Maintenance performance metrics: a state-of-the-art review. J. Qual. Maint. Eng. 19(3), 233–277 (2013). https://doi.org/10.1108/JQME-05-2013-0029

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajiv Kumar Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R.K. Framework Based on Machine Learning Approach for Prediction of the Remaining Useful Life: A Case Study of an Aviation Engine. J Fail. Anal. and Preven. 24, 1333–1350 (2024). https://doi.org/10.1007/s11668-024-01922-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-024-01922-w

Keywords

Navigation