Abstract
The El Niño-Southern Oscillation (ENSO) significantly influences the complexity and variability of the global climate system, driving its variability. ENSO events’ irregularity and unpredictability arise from intricate ocean–atmosphere interactions and nonlinear feedback mechanisms, complicating their prediction of timing, intensity, and geographic impacts. This study applies Genetic Programming and Genetic Algorithms within the EASEA (EAsy Specification of Evolutionary Algorithms) Evolutionary Algorithms (EA) framework to develop a repository of symbolic equations for El Niño and La Niña events, spanning their various intensities. By analyzing data from the Oceanic Niño Index, this approach yields equation-based characterizations of ENSO events. This methodology not only enhances ENSO characterization strategies but also contributes to expanding the use of EAs in climate event analysis. The resulting equations have the potential to offer insights beyond academia, benefiting education, climate policy, and environmental management. This highlights the importance of ongoing refinement, validation, and exploration in these fields through EAs.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
The data used on this work is available on [73]
References
M. Davey, El Niño and the Souther Oscillation: Multiscale variability and global and regional impacts. Q. J. R. Meteorol. Soc. (2002). https://doi.org/10.1256/003590002320373355
S. Yang, Z. Li, J.-Y. Yu, X. Hu, W. Dong, S. He, El Niño-Southern Oscillation and its impact in the changing climate. Natl. Sci. Rev. (2018). https://doi.org/10.1093/nsr/nwy046
R. Abarca-del-Rio, D. Gambis, D. Salstein, Interannual signals in length of day and atmospheric angular momentum. Ann. Geophys. 18, 347–364 (2000). https://doi.org/10.1007/s00585-000-0347-9
B. Kolaczek, J. Nastula, D. Salstein, El Nino-related variations in atmosphere-polar motion interactions. J. Geodyn. 36(3), 397–406 (2003). https://doi.org/10.1016/S0264-3707(03)00058-9
T. Delcroix, S.L.L. Michel, D. Swingedouw, B. Malaizé, A.-L. Daniau, R. Abarca-del-Rio, T. Caley, A.-M. Sémah, Clarifying the role of ENSO on easter island precipitation changes: potential environmental implications for the last millennium. Paleoceanogr. Paleoclimatol. 37(12), 2022–004514 (2022)
G. Dufrénot, W. Ginn, M. Pourroy, ENSO Climate Patterns on Global Economic Conditions. https://doi.org/10.21203/rs.3.rs-2827605/v1
N. Dai, P.A. Arkin, Twentieth century ENSO-related precipitation mean states in twentieth century reanalysis, reconstructed precipitation and CMIP5 models. Clim. Dyn. 48(9–10), 3061–3083 (2017)
O. Muza, El Nino-Southern Oscillation influences on food security. J. Sustain. Dev. 10(5), 268–279 (2017). https://doi.org/10.5539/jsd.v10n5p268
Z.W. Kundzewicz, M. Szwed, I. Pińskwar, Climate variability and floods-a global review. Water 11(7), 1399 (2019). https://doi.org/10.3390/w11071399
I. Fustos, R. Abarca-del-Rio, P. Moreno-Yaeger, M. Somos-Valenzuela, Rainfall-induced landslides forecast using local precipitation and global climate indexes. Nat. Hazards 102, 115–131 (2020). https://doi.org/10.1007/s11069-020-03827-5
H. Yin, Z. Wu, H.J. Fowler, S. Blenkinsop, H. He, Y. Li, The combined impacts of ENSO and IOD on global seasonal droughts. Atmosphere 13, 1673 (2022). https://doi.org/10.3390/atmos13101673
G.G. Nobre, S. Muis, T.I. Veldkamp, P.J. Ward, Achieving the reduction of disaster risk by better predicting impacts of El Niño and La Niña. Prog. Disaster Sci. 2, 100022 (2019). https://doi.org/10.1016/j.pdisas.2019.100022
S.I. An, A review of interdecadal changes in the nonlinearity of the El Nino-Southern Oscillation. Theor. Appl. Climatol. 97, 29–40 (2009). https://doi.org/10.1007/s00704-008-0085-8
H.F. Astudillo, F.A. Borotto, R. Abarca-del Rio, Embedding reconstruction methodology for short time series—application to large El Niño events. Nonlinear Process. Geophys. 17, 753–764 (2010). https://doi.org/10.5194/npg-17-753-2010
S.T. Ogunjo, I.A. Fuwape, Nonlinear characterization and interaction in teleconnection patterns. Adv. Space Res. 65(12), 2723–2732 (2020). https://doi.org/10.1016/j.asr.2020.02.006
O. Alizadeh, A review of ENSO teleconnections at present and under future global warming. Wiley Interdiscip. Rev. Clim. Change 15(1), 861 (2024). https://doi.org/10.1002/wcc.861
S. Das, R. Bhardwaj, V. Duhoon, Chaotic dynamics of recharge-discharge El Nino-Southern Oscillation (ENSO) model. Eur. Phys. J. Spec. Top. 232(1), 217–230 (2023)
A.R. Lima, A.J. Cannon, W.W. Hsieh, Nonlinear regression in environmental sciences using extreme learning machines: a comparative evaluation. Environ. Model. Softw. 73, 175–188 (2015). https://doi.org/10.1016/j.envsoft.2015.08.002
P. Nooteboom, Q. Feng, C. López, E. Hernández-García, H. Dijkstra, Using network theory and machine learning to predict El Niño. Earth Syst. Dyn. Discuss. 9(3), 969–83 (2018). https://doi.org/10.5194/esd-2018-13
H.A. Dijkstra, P. Petersik, E. Hernández-García, C. López, The application of machine learning techniques to improve El Niño prediction skill. Front. Phys. 7, 153 (2019). https://doi.org/10.3389/fphy.2019.00153
Y. Tang, A. Duan, Using deep learning to predict the East Asian summer monsoon. Environ. Res. Lett. 16(12), 124006 (2021). https://doi.org/10.1088/1748-9326/ac34bc
S. Liu, C. Ding, F. Jiang, Y. Wang, B. Yin, Auto-weighted multi-view learning for semi-supervised graph clustering. Neurocomputing 362, 19–32 (2019). https://doi.org/10.1016/j.neucom.2019.07.011
M. Saha, R. Nanjundiah, Prediction of ENSO and EQUINOO indices during June to September using deep learning method. Meteorol. Appl. 27, e1826 (2019). https://doi.org/10.1002/met.1826
G.-G. Wang, H. Cheng, Y. Zhang, H. Yu, ENSO analysis and prediction using deep learning: a review. Neurocomputing (2022)
A. Alvarez, P. Vélez, A. Orfila, G. Vizoso, J. Tintoré (2002) Evolutionary computation for climate and ocean forecasting: “El Niño forecasting”. In: N.C. Fiemming, S. Vallerga, N. Pinardi, H.W.A. Behrens, G. Manzella, D. Prandle, J.H. Stei (eds.) Opertional Oceanography. Elsevier Oceanography Series, vol. 66, pp. 489–494 . https://doi.org/10.1016/S0422-9894(02)80055-1
I. De Falco, A. Della Cioppa, E. Tarantino, A genetic programming system for time series prediction and its application to El Niño forecast, in Soft Computing: Methodologies and Applications. ed. by F. Hoffmann, M. Köppen, F. Klawonn, R. Roy (Springer, Berlin, 2005), pp.151–162
K. Stanisławska, K. Krawiec, Z. Kundzewicz, Modeling global temperature changes with genetic programming. Comput. Math. Appl. 64, 3717–3728 (2012). https://doi.org/10.1016/j.camwa.2012.02.049
Y. Wang, Y. Zhang, G.-G. Wang, Forecasting ENSO using convolutional lstm network with improved attention mechanism and models recombined by genetic algorithm in CMIP5/6. Inf. Sci. 642, 119106 (2023). https://doi.org/10.1016/j.ins.2023.119106
H.F. Astudillo, R. Abarca-del Rio, F.A. Borotto, Long-term potential nonlinear predictability of El Niño-La Niña events. Clim. Dyn. 49, 131 (2017). https://doi.org/10.1007/00382-016-3330-1
R.H. Zhang, C. Gao, L. Feng, Recent ENSO evolution and its real-time prediction challenges. Natl. Sci. Rev. 9(4), 052 (2022)
H. Wang, Y. Dai, S. Yang, T. Li, J. Luo, B. Sun, M. Duan, J. Ma, Z. Yin, Y. Huang, Predicting climate anomalies: a real challenge. Atmos. Ocean. Sci. Lett. 15(1), 100115 (2022)
J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Evolution (MIT Press, Cambridge, 1992)
W. Banzhaf, P. Nordin, R. Keller, F. Francone, Genetic programming: an introduction on the automatic evolution of computer programs and its applications (1998)
J.R. Koza, Genetic Programming IV: Routine Human-Competitive Machine Intelligence (Kluwer Academic Publishers, New York, 2003)
J.R. Koza, R. Poli, (2005) Genetic Programming, pp. 127–164. https://doi.org/10.1007/0-387-28356-0_5
A. Brindle, Genetic algorithms for function optimisation. Technical Report TR81-2, Dept. of Computer Science, University of Alberta, Edmonton (1981)
D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, New York, 1989)
J.H. Holland, Adaptation in Natural and Artificial Systems (MIT Press, Cambridge, 1992)
N.L. Cramer, A representation for the adaptive generation of simple sequential programs, in Proceedings of the First International Conference on Genetic Algorithms, vol. 183, p. 187 (1985)
M.A. Lones, S.L. Smith, in W. Banzhaf, P. Machado, M. Zhang (eds.) Evolutionary Machine Learning in Medicine, pp. 591–609. Springer, Singapore (2024). https://doi.org/10.1007/978-981-99-3814-8_20
Q.U. Ain, H. Al-Sahaf, B. Xue, M. Zhang, Genetic programming for automatic skin cancer image classification. Expert Syst. Appl. 197, 116680 (2022)
M. O’Neill, A. Brabazon, in W. Banzhaf, P. Machado, M. Zhang (eds.) Evolutionary Machine Learning in Finance, pp. 695–713. Springer, Singapore (2024). https://doi.org/10.1007/978-981-99-3814-8_24
S.-H. Chen, Genetic Algorithms and Genetic Programming in Computational Finance (Springer, New York, 2012)
N. Nedjah, L.d.M. Mourelle, in N. Nedjah, L.d.M. Mourelle, A. Abraham (eds.) Evolutionary Digital Circuit Design Using Genetic Programming, pp. 147–171. Springer, Berlin (2006). https://doi.org/10.1007/3-540-32498-4_7
J.R. Koza, F.H. Bennett, D. Andre, M.A. Keane, Evolutionary design of analog electrical circuits using genetic programming, in Adaptive Computing in Design and Manufacture. ed. by I.C. Parmee (Springer, London, 1998), pp.177–192
J.E. Batista, S. Silva, in W. Banzhaf, P. Machado, M. Zhang (eds.) Evolutionary Machine Learning in Environmental Science, pp. 563–590. Springer, Singapore (2024). https://doi.org/10.1007/978-981-99-3814-8_19
J.E. Batista, S. Silva, Evolving a cloud-robust water index with genetic programming, in Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 55–56 (2022)
X. Wen, X. Zhang, H. Xing, G. Ye, H. Li, Y. Zhang, H. Wang, An improved genetic algorithm based on reinforcement learning for aircraft assembly scheduling problem. Comput. Ind. Eng. 193, 110263 (2024). https://doi.org/10.1016/j.cie.2024.110263
L. He, W. Wang, Design optimization of public building envelope based on multi-objective quantum genetic algorithm. J. Build. Eng. 91, 109714 (2024). https://doi.org/10.1016/j.jobe.2024.109714
A. Sohail, Genetic algorithms in the fields of artificial intelligence and data sciences. Ann. Data Sci. 10 (2021). https://doi.org/10.1007/s40745-021-00354-9
M. Muslim, D. Yosza, H. Javed, A. Alamsyah, J. Unjung, W. Abror, D.A.A. Pertiwi, T. Mustaqim, An ensemble stacking algorithm to improve model accuracy in bankruptcy prediction. J. Data Sci. Intell. Syst. 2, 1–2 (2023). https://doi.org/10.47852/bonviewJDSIS3202655
H. Maier, S. Razavi, Z. Kapelan, L. Matott, J. Kasprzyk, B. Tolson, Introductory overview: optimization using evolutionary algorithms and other metaheuristics. Environ. Model. Softw. 114, 1–2 (2018). https://doi.org/10.1016/j.envsoft.2018.11.018
...H.R. Maier, Z. Kapelan, J. Kasprzyk, J. Kollat, L.S. Matott, M.C. Cunha, G.C. Dandy, M.S. Gibbs, E. Keedwell, A. Marchi, A. Ostfeld, D. Savic, D.P. Solomatine, J.A. Vrugt, A.C. Zecchin, B.S. Minsker, E.J. Barbour, G. Kuczera, F. Pasha, A. Castelletti, M. Giuliani, P.M. Reed, Evolutionary algorithms and other metaheuristics in water resources: current status, research challenges and future directions. Environ. Model. Softw. 62, 271–299 (2014). https://doi.org/10.1016/j.envsoft.2014.09.013
A.S. Leon, L. Bian, Y. Tang, Comparison of the genetic algorithm and pattern search methods for forecasting optimal flow releases in a multi-storage system for flood control. Environ. Model. Softw. 145, 105198 (2021). https://doi.org/10.1016/j.envsoft.2021.105198
C.-P. Tung, T.-Y. Lee, Y.-C.E. Yang, Y.-J. Chen, Application of genetic programming to project climate change impacts on the population of formosan landlocked salmon. Environ. Model. Softw. 24(9), 1062–1072 (2009). https://doi.org/10.1016/j.envsoft.2009.02.012
D. Carreres-Prieto, J. Ybarra-Moreno, J.T. García, J.F. Cerdán-Cartagena, A comparative analysis of neural networks and genetic algorithms to characterize wastewater from led spectrophotometry. J. Environ. Chem. Eng. 11(3), 110219 (2023). https://doi.org/10.1016/j.jece.2023.110219
A. Danandeh Mehr, V. Nourani, E. Kahya, B. Hrnjica, A.M.A. Sattar, Z.M. Yaseen, Genetic programming in water resources engineering: a state-of-the-art review. J. Hydrol. 566, 643–667 (2018). https://doi.org/10.1016/j.jhydrol.2018.09.043
A. Danandeh Mehr, An improved gene expression programming model for streamflow forecasting in intermittent streams. J. Hydrol. 563, 669–678 (2018). https://doi.org/10.1016/j.jhydrol.2018.06.049
GGWeather.com: Oceanic Niño Index (ONI). https://ggweather.com/enso/oni.htm Accessed 2024-04-01
B. Huang, V.F. Banzon, E. Freeman, J. Lawrimore, W. Liu, T.C. Peterson, T.M. Smith, P.W. Thorne, S.D. Woodruff, H.-M. Zhang, Extended reconstructed sea surface temperature version 4 (ersst.v4). part i: Upgrades and intercomparisons. J. Clim. 28(3), 911–930 (2015). https://doi.org/10.1175/JCLI-D-14-00006.1
R. Ding, Y.-H. Tseng, E. Di Lorenzo, L. Shi, J. Li, J.-Y. Yu, C. Wang, C. Sun, J.-J. Luo, K.-J. Ha, Z.-Z. Hu, F. Li, Multi-year el niño events tied to the north pacific oscillation. Nat. Commun. 13 (2022). https://doi.org/10.1038/s41467-022-31516-9
P. Collet, J.P. Rennard, Stochastic optimization algorithms. Handbook of Research on Nature Inspired Computing for Economics and Management (2007)
P. Collet, E. Lutton, M. Schoenauer, J. Louchet, Take it easea, in Parallel Problem Solving from Nature PPSN VI. ed. by M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J.J. Merelo, H.-P. Schwefel (Springer, Berlin, 2000), pp.891–901
U. Abdulkarimova, A. Leonteva, A. Jeannin-Girardon, P. Collet, The PARSEC machine: a non-Newtonian supra-linear supercomputer. Azerbaijan J. High Perform. Comput. 2, 122–140 (2019). https://doi.org/10.32010/26166127.2019.2.2.122.140
O. Maitre, N. Lachiche, P. Clauss, L. Baumes, A. Corma, P. Collet, Efficient parallel implementation of evolutionary algorithms on GPGPU cards, in Euro-Par (2009)
O. Maitre, S. Querry, N. Lachiche, P. Collet, EASEA parallelization of tree-based genetic programming, in al, F. (ed.) IEEE CEC 2010, pp. 1–8. IEEE, New York (2010). https://doi.org/10.1109/CEC.2010.5586258
O. Maitre, GPGPU for evolutionary algorithms. Ph.D. thesis, University of Strasbourg (2011)
P. Collet, F. Kruger, O. Maitre, Automatic parallelization of EC on GPGPUs and clusters of GPGPU machines with EASEA and EASEA-CLOUD, pp. 35–59 (2013). https://doi.org/10.1007/978-3-642-37959-8_3
O. Maitre, F. Kruger, D. Sharma, S. Querry, N. Lachiche, P. Collet, Parallelizing Evolutionary Algorithms on GPGPU Cards with the EASEA Platform, pp. 301–319 (2017). https://doi.org/10.1002/9781119332015.ch15
H.-L. Ren, B. Lu, J. Wan, B. Tian, P. Zhang, Identification Standard for ENSO Events and Its Application to Climate Monitoring and Prediction in China. J. Meteorol. Res. 32(6), 923–936 (2018). https://doi.org/10.1007/s13351-018-8078-6
F. Alvial Vásquez, R. Abarca-del-Rio, A. Ávila, High-resolution precipitation gridded dataset on the south-central zone (\(34^\circ s-41 ^\circ\) s) of chile. Front. Earth Sci. 8 (2020) https://doi.org/10.3389/feart.2020.519975
E.R. Girden, ANOVA: Repeated Measures, vol. 84 (Sage, New York, 1992)
El Niño and La Niña years and intensities. https://ggweather.com/enso/oni.htm
Acknowledgements
The authors sincerely thank the referees for their thoughtful and thorough reviews, which helped us enhance the quality and clarity of this work.
Funding
The authors did not receive any funding for this work.
Author information
Authors and Affiliations
Contributions
Conceptualization, R.A.-d.-R. and U. A.; methodology, R.A.-d.-R, U.A., P.C.; software, U.A. and P.C.; validation, R.A.-d.-R and U.A.; formal analysis, U.A. and R.A.-d.-R.; investigation, U.A. and R.A.-d.-R.; data curation, U.A. and R.A.-d.-R.; visualization, U.A., R.A.-d.-R.; supervision, R.A.-d.-R.; project administration, R.A.-d.-R.; U.A.; writing- original draft: U.A. and R.A.-d.-R.; writing-review and editing, U.A., R.A.-d.-R. and P.C.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethics approval
Not applicable.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Abdulkarimova, U., Abarca-del-Rio, R. & Collet, P. Harnessing evolutionary algorithms for enhanced characterization of ENSO events. Genet Program Evolvable Mach 26, 4 (2025). https://doi.org/10.1007/s10710-024-09497-z
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10710-024-09497-z