Nothing Special   »   [go: up one dir, main page]

Skip to main content

Evolutionary Machine Learning in Environmental Science

  • Chapter
  • First Online:
Handbook of Evolutionary Machine Learning

Part of the book series: Genetic and Evolutionary Computation ((GEVO))

  • 2161 Accesses

Abstract

This chapter reviews the use of Evolutionary Machine Learning (EML) in environmental science. We cover the various steps of the machine learning pipeline, also addressing topics like model robustness, interpretability, and human-competitiveness. Environmental science is an interdisciplinary field mainly dedicated to climate change, natural resource management, conservation biology, and sustainability. We review applications such as forest monitoring, optimization of photovoltaic installations, improvement of traffic flow, and reduction of waste in animal farms, among others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Frequently also called feature extraction, feature generation, feature learning, feature discovery, feature synthesis, or constructive induction.

References

  1. Abbona, F., Vanneschi, L., Bona, M., Giacobini, M.: A GP approach for precision farming. In: 2020 IEEE Congress on Evolutionary Computation (CEC). IEEE, July 2020

    Google Scholar 

  2. Abdella, M., Marwala, T.: The use of genetic algorithms and neural networks to approximate missing data in database. In: IEEE 3rd International Conference on Computational Cybernetics, 2005. ICCC 2005, pp. 207–212 (2005)

    Google Scholar 

  3. Ahmed, U., Chun-Wei Lin, J., Srivastava, G., Djenouri, Y.: A nutrient recommendation system for soil fertilization based on evolutionary computation. Comput. Electron. Agric. 189, 106407 (2021)

    Google Scholar 

  4. Almeida, A.E., da Torres, R.S.: Remote sensing image classification using genetic-programming-based time series similarity functions. IEEE Geosci. Remote Sens. Lett. 14(9), 1499–1503 (2017)

    Google Scholar 

  5. Almeida, J., dos Santos, J.A., Miranda, W.O., Alberton, B., Morellato, L.P.C., da Torres, R.S.: Deriving vegetation indices for phenology analysis using genetic programming. Ecol. Inf. 26, 61–69 (2015)

    Google Scholar 

  6. Arnaldo, I., Krawiec, K., O’Reilly, U.-M.: Multiple regression genetic programming. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation. ACM, July 2014

    Google Scholar 

  7. Arnaldo, I., O’Reilly, U.-M., Veeramachaneni, K.: Building predictive models via feature synthesis. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 983–990, July 2015

    Google Scholar 

  8. Asadi, H., Dastorani, M.T., Khosravi, K., Sidle, R.C.: Applying the C-Factor of the RUSLE model to improve the prediction of suspended sediment concentration using smart data-driven models. Water 14(19) (2022)

    Google Scholar 

  9. Asrari, A., Wu, T.X., Ramos, B.: A hybrid algorithm for short-term solar power prediction—sunshine state case study. IEEE Trans. Sust. Energy 8(2), 582–591 (2017)

    Google Scholar 

  10. Awad, M., Khanna, R.: Support vector regression. In: Efficient Learning Machines, pp. 67–80. Apress (2015)

    Google Scholar 

  11. Bacardit, J., Brownlee, A.E.I., Cagnoni, S., Iacca, G., McCall, J., Walker, D.: The intersection of evolutionary computation and explainable AI. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO ’22, pp. 1757–1762, New York, NY, USA. Association for Computing Machinery (2022)

    Google Scholar 

  12. Bandyopadhyay, S., Maulik, U., Mukhopadhyay, A.: Multiobjective genetic clustering for pixel classification in remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 45(5), 1506–1511 (2007)

    Google Scholar 

  13. Banerjee, B.P., Raval, S.: A particle swarm optimization based approach to pre-tune programmable hyperspectral sensors. Remote Sens. 13(16), 3295 (2021)

    Google Scholar 

  14. Basak, A., Mengshoel, O.J., Schmidt, K., Kulkarni, C.: Wetting and drying of soil: From data to understandable models for prediction. In: 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA). IEEE, Oct. 2018

    Google Scholar 

  15. Batista, J.E., Cabral, A.I.R., Vasconcelos, M.J.P., Vanneschi, L., Silva, S.: Improving land cover classification using genetic programming for feature construction. Remote Sens. 13(9), 1623 (2021)

    Google Scholar 

  16. Batista, J.E., Rodrigues, N.M., Cabral, A.I.R., Vasconcelos, M.J.P., Venturieri, A., Silva, L.G.T., Silva, S.: Optical time series for the separation of land cover types with similar spectral signatures: cocoa agroforest and forest. Int. J. Remote Sens. 43(9), 3298–3319 (2022)

    Google Scholar 

  17. Batista, J.E., Silva, S.: Improving the detection of burnt areas in remote sensing using hyper-features evolved by M3GP. In: 2020 IEEE Congress on Evolutionary Computation (CEC). IEEE, July 2020

    Google Scholar 

  18. Batista, J.E., Silva, S.: Evolving a cloud-robust water index with genetic programming. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion. ACM, July 2022

    Google Scholar 

  19. Berardi, L., Giustolisi, O., Kapelan, Z., Savic, D.A.: Development of pipe deterioration models for water distribution systems using EPR. J. Hydroinf. 10(2), 113–126 (2008)

    Google Scholar 

  20. Broni-Bediako, C., Murata, Y., Mormille, L.H., Atsumi, M.: Evolutionary NAS for aerial image segmentation with gene expression programming of cellular encoding. Neural Comput. Appl. 34(17), 14185–14204 (2021)

    Google Scholar 

  21. Cabral, A.I.R., Silva, S., Silva, P.C., Vanneschi, L., Vasconcelos, M.J.: Burned area estimations derived from landsat ETM+ and OLI data: comparing genetic programming with maximum likelihood and classification and regression trees. ISPRS J. Photogramm. Remote Sens. 142, 94–105 (2018)

    Google Scholar 

  22. Carvalho, P., Ribeiro, B., Rodrigues, N.M., Batista, J.E., Vanneschi, L., Silva, S.: Feature selection on epistatic problems using genetic algorithms with nested classifiers. In: Applications of Evolutionary Computation, pp. 656–671. Springer Nature Switzerland (2023)

    Google Scholar 

  23. Castelli, M., Gonçalves, I., Trujillo, L., Popovič, A.: An evolutionary system for ozone concentration forecasting. Inf. Syst. Front. 19(5), 1123–1132 (2016)

    Google Scholar 

  24. Castelli, M., Silva, S., Vanneschi, L., Cabral, A., Vasconcelos, M.J., Catarino, L., Carreiras, J.M.B.: Land cover/land use multiclass classification using GP with geometric semantic operators. In: Applications of Evolutionary Computation, pp. 334–343. Springer, Berlin, Heidelberg (2013)

    Google Scholar 

  25. Castelli, M., Trujillo, L., Vanneschi, L., Popovič, A.: Prediction of energy performance of residential buildings: a genetic programming approach. Energy Build. 102, 67–74 (2015)

    Google Scholar 

  26. Castelli, M., Vanneschi, L., Popovič, A.: Predicting burned areas of forest fires: an artificial intelligence approach. Fire Ecol. 11(1), 106–118 (2015)

    Google Scholar 

  27. Chang, N.-B., Xuan, Z., Yang, Y.J.: Exploring spatiotemporal patterns of phosphorus concentrations in a coastal bay with MODIS images and machine learning models. Remote Sens. Environ. 134, 100–110 (2013)

    Google Scholar 

  28. Chen, L.: A study of applying genetic programming to reservoir trophic state evaluation using remote sensor data. Int. J. Remote Sens. 24(11), 2265–2275 (2003)

    Google Scholar 

  29. Chion, C., Landry, J.-A., Da Costa, L.: A genetic-programming-based method for hyperspectral data information extraction: agricultural applications. IEEE Trans. Geosci. Remote Sens. 46(8), 2446–2457 (2008)

    Google Scholar 

  30. Chuvieco, E.: Fundamentals of Satellite Remote Sensing. CRC Press, Jan. 2020

    Google Scholar 

  31. Costa, L., Nunes, L., Ampatzidis, Y.: A new visible band index (vNDVI) for estimating NDVI values on RGB images utilizing genetic algorithms. Comput. Electron. Agric. 172, 105334 (2020)

    Google Scholar 

  32. da Silva, J.M., Figueiredo, A., Cunha, J., Eiras-Dias, J.E., Silva, S., Vanneschi, L., Mariano, P.: Using rapid chlorophyll fluorescence transients to classify vitis genotypes. Plants 9(2), 174, (2020)

    Google Scholar 

  33. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Google Scholar 

  34. Deb, K.: Multi-objective optimisation using evolutionary algorithms: an introduction. In: Multi-objective Evolutionary Optimisation for Product Design and Manufacturing, pp. 3–34. Springer, London (2011)

    Google Scholar 

  35. Domingos, P.: A few useful things to know about machine learning. Commun. ACM 55(10), 78–87 (2012)

    Google Scholar 

  36. Dominic, P., Leahy, D., Willis, M.: GPTIPS:an open source genetic programming toolbox for multigene symbolic regression. Lect. Notes Eng. Comput. Sci. 2180, 12 (2010)

    Google Scholar 

  37. dos Santos, J.A., Ferreira, C.D., da Torres, R.S., Gonçalves, M.A., Lamparelli, R.A.C.: A relevance feedback method based on genetic programming for classification of remote sensing images. Inf. Sci. 181(13), 2671–2684 (2011)

    Google Scholar 

  38. Dubey, A., Inoue, A.H., Birmann, P.T.F., da Silva, S.R.: Evolutionary feature selection. In: Proceedings of the Genetic and Evolutionary Computation Conference. ACM, July 2022

    Google Scholar 

  39. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: MHS’S95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. IEEE (1995)

    Google Scholar 

  40. Eklund, N.H.W.: Using genetic algorithms to estimate confidence intervals for missing spatial data. IEEE Trans. Syst. Man Cybern. Part C (Applications and Reviews) 36(4), 519–523 (2006)

    Google Scholar 

  41. An experimental study: Enríquez-Zárate, J., Trujillo, L., de Lara, S., Castelli, M., Z-Flores, E., Muñoz, L., Popovič, A.: Automatic modeling of a gas turbine using genetic programming. Appl. Soft Comput. 50, 212–222 (2017)

    Google Scholar 

  42. ESA. Sentinel 2 User Guide, Accessed 31 Aug. 2022. https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/resolutions/spatial

  43. ESA. Sentinel 1 User Guide, Accessed 22 May 2023. https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-1-sar

  44. García, J.C.F., Kalenatic, D., Bello, C.A.L.: Missing data imputation in multivariate data by evolutionary algorithms. Comput. Hum. Behav. 27(5), 1468–1474 (2011). 2009 Fifth International Conference on Intelligent Computing

    Google Scholar 

  45. Ghimire, S., Deo, R.C., Downs, N.J., Raj, N.: Self-adaptive differential evolutionary extreme learning machines for long-term solar radiation prediction with remotely-sensed MODIS satellite and reanalysis atmospheric products in solar-rich cities. Remote Sens. Environ. 212, 176–198 (2018)

    Google Scholar 

  46. Giustolisi, O., Savic, D.A.: A symbolic data-driven technique based on evolutionary polynomial regression. J. Hydroinf. 8(3), 207–222 (2006)

    Google Scholar 

  47. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org

  48. Hart, E., Sim, K., Gardiner, B., Kamimura, K.: A hybrid method for feature construction and selection to improve wind-damage prediction in the forestry sector. In: Proceedings of the Genetic and Evolutionary Computation Conference, New York, NY, USA, July 2017. ACM (2017)

    Google Scholar 

  49. Hasan, M.K., Alam, M.A., Roy, S., Dutta, A., Jawad, M.T., Das, S.: Missing value imputation affects the performance of machine learning: a review and analysis of the literature (2010–2021). Inf. Med. Unlock. 27, 100799 (2021)

    Google Scholar 

  50. Hashim, H., Latif, Z.A., Adnan, N.A.: Urban vegetation classification with NDVI threshold value method with very high resolution (VHR) pleiades imagery. Int. Archiv. Photogramm. Remote Sens. Spat. Inf. Sci. XLII-4/W16, 237–240, Oct. 2019

    Google Scholar 

  51. He, C., Zhang, Y., Gong, D.: A pseudo-label guided artificial bee colony algorithm for hyperspectral band selection. Remote Sens. 12(20), 3456 (2020)

    Google Scholar 

  52. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology Control and Artificial Intelligence. MIT Press, Cambridge, MA, USA (1992)

    Book  Google Scholar 

  53. Humies. Annual “Humies” Awards For Human-Competitive Results. Accessed 22 May 2023. https://www.human-competitive.org/

  54. Ingalalli, V., Silva, S., Castelli, M., Vanneschi, L.: A multi-dimensional genetic programming approach for multi-class classification problems. In: Lecture Notes in Computer Science, pp. 48–60. Springer, Berlin Heidelberg (2014)

    Google Scholar 

  55. Johari, A., Habibagahi, G., Ghahramani, A.: Prediction of soil–water characteristic curve using genetic programming. J. Geotech. Geoenviron. Eng. 132(5), 661–665 (2006)

    Google Scholar 

  56. Kabiri, P., Pandi, M.H., Nejat, S.K., Ghaderi, H.: NDVI optimization using genetic algorithm. In: 2011 7th Iranian Conference on Machine Vision and Image Processing. IEEE, Nov. 2011

    Google Scholar 

  57. Kanan, H.R., Faez, K., Taheri, S.M.: Feature selection using ant colony optimization (ACO): a new method and comparative study in the application of face recognition system. In: Perner, P. (ed.) Advances in Data Mining. Theoretical Aspects and Applications, pp. 63–76. Springer, Berlin, Heidelberg (2007)

    Google Scholar 

  58. Kautsky, H., Hirsch, A.: Neue versuche zur kohlensäureassimilation. Die Naturwissenschaften 19(48), 964–964 (1931)

    Google Scholar 

  59. Keijzer, M., Baptist, M., Babovic, V., Uthurburu, J.R.: Determining equations for vegetation induced resistance using genetic programming. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, GECCO ’05, pp. 1999–2006, New York, NY, USA (2005). Association for Computing Machinery

    Google Scholar 

  60. Key, C., Benson, N.: Landscape Assessment: Ground measure of severity, the Composite Burn Index; and Remote sensing of severity, the Normalized Burn Ratio, pp. LA 1–51. USDA Forest Service, Rocky Mountain Research Station, Jan. 2006

    Google Scholar 

  61. Kim, D.-K., Cao, H., Jeong, K.-S., Recknagel, F., Joo, G.-J.: Predictive function and rules for population dynamics of microcystis aeruginosa in the regulated nakdong river (South Korea), discovered by evolutionary algorithms. Ecol. Model. 203(1–2), 147–156 (2007)

    Google Scholar 

  62. Koza, J.R.: Human-competitive results produced by genetic programming. Gen. Programm. Evolvable Mach. 11(3–4), 251–284 (2010)

    Google Scholar 

  63. La Cava, W., Helmuth, T., Spector, L., Moore, J.H.: A probabilistic and multi-objective analysis of lexicase selection and \(\varepsilon \)-lexicase selection. Evol. Comput. 27(3), 377–402 (2019)

    Google Scholar 

  64. La Cava, W., Moore, J.H.: Semantic variation operators for multidimensional genetic programming. In: Proceedings of the Genetic and Evolutionary Computation Conference. ACM, July 2019

    Google Scholar 

  65. La Cava, W., Moore, J.H.: Learning feature spaces for regression with genetic programming. Genet. Program. Evolvable Mach. 21(3), 433–467 (2020)

    Google Scholar 

  66. La Cava, W., Silva, S., Danai, K., Spector, L., Vanneschi, L., Moore, J.H.: Multidimensional genetic programming for multiclass classification. Swarm Evol. Comput. 44, 260–272 (2019)

    Google Scholar 

  67. Lary, D.J., Alavi, A.H., Gandomi, A.H., Walker, A.L.: Machine learning in geosciences and remote sensing. Geosci. Front. 7(1), 3–10 (2016)

    Google Scholar 

  68. Leardi, R., Boggia, R., Terrile, M.: Genetic algorithms as a strategy for feature selection. J. Chemom. 6(5), 267–281 (1992)

    Google Scholar 

  69. Lensen, A., Al-Sahaf, H., Zhang, M., Verma, B.: Genetic programming for algae detection in river images. In: 2015 IEEE Congress on Evolutionary Computation (CEC). IEEE, May 2015

    Google Scholar 

  70. Li, X., Mabu, S., Zhou, H., Shimada, K., Hirasawa, K.: Genetic network programming with estimation of distribution algorithms for class association rule mining in traffic prediction. In: IEEE Congress on Evolutionary Computation. IEEE, July 2010

    Google Scholar 

  71. Liu, G., Li, Y., Jiao, L., Chen, Y., Shang, R.: Multiobjective evolutionary algorithm assisted stacked autoencoder for PolSAR image classification. Swarm Evol. Comput. 60, 100794 (2021)

    Google Scholar 

  72. Liu, H., Motoda, H.: Feature Extraction, Construction and Selection: A Data Mining Perspective. Kluwer Academic Publishers, USA (1998)

    Book  MATH  Google Scholar 

  73. Lobato, F., Sales, C., Araujo, I., Tadaiesky, V., Dias, L., Ramos, L., Santana, A.: Multi-objective genetic algorithm for missing data imputation. Pattern Recogn. Lett. 68, 126–131 (2015)

    Google Scholar 

  74. Lotz, M., Silva, S.: Application of genetic programming classification in an industrial process resulting in greenhouse gas emission reductions. In: Applications of Evolutionary Computation, pp. 131–140. Springer, Berlin, Heidelberg (2010)

    Google Scholar 

  75. Miao, L., Bi, Y., Xue, B., Qiong, H., Zhang, M., Wei, Y., Yang, P., Wenbin, W.: Genetic programming for high-level feature learning in crop classification. Remote Sens. 14(16), 3982 (2022)

    Google Scholar 

  76. Makkeasorn, A., Chang, N.-B., Li, J.: Seasonal change detection of riparian zones with remote sensing images and genetic programming in a semi-arid watershed. J. Environ. Manag. 90(2), 1069–1080 (2009)

    Google Scholar 

  77. Martínez-Ballesteros, M., Martínez-Álvarez, F., Troncoso, A., Riquelme, J.C.: An evolutionary algorithm to discover quantitative association rules in multidimensional time series. Soft Comput. 15(10), 2065–2084 (2011)

    Google Scholar 

  78. Martínez-Ballesteros, M., Troncoso, A., Martínez-Álvarez, F., Riquelme, J.C.: Mining quantitative association rules based on evolutionary computation and its application to atmospheric pollution. Integr. Comput.-Aided Eng. 17(3), 227–242 (2010)

    Google Scholar 

  79. Mateus, P., Fernandes, P.M.: Forest fires in Portugal: Dynamics, causes and policies. In: Forest Context and Policies in Portugal, pp. 97–115. Springer International Publishing (2014)

    Google Scholar 

  80. McConaghy, T.: FFX: Fast, Scalable, Deterministic Symbolic Regression Technology, pp. 235–260. Springer, New York, NY (2011)

    Google Scholar 

  81. Mei, Y., Chen, Q., Lensen, A., Xue, B., Zhang, M.: Explainable artificial intelligence by genetic programming: a survey. IEEE Trans. Evol. Comput. 1–1 (2022)

    Google Scholar 

  82. Mejia-Zuluaga, P.A., Dozal, L., Valdiviezo-N, J.C.: Genetic programming approach for the detection of mistletoe based on UAV multispectral imagery in the conservation area of mexico city. Remote Sens. 14(3), 801 (2022)

    Google Scholar 

  83. Miller, G.T., Spoolman, S.: Environmental Science, 13th ed. Wadsworth Publishing, Belmont, CA, Jan. 2010

    Google Scholar 

  84. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming. In: Lecture Notes in Computer Science, pp. 21–31. Springer, Berlin, Heidelberg (2012)

    Google Scholar 

  85. Muñoz, L., Silva, S., Trujillo, L.: M3GP–multiclass classification with GP. In: Lecture Notes in Computer Science, pp. 78–91. Springer International Publishing (2015)

    Google Scholar 

  86. Muñoz, L., Trujillo, L., Silva, S.: Transfer learning in constructive induction with genetic programming. Genetic Programm. Evol. Mach. 21(4), 529–569 (2019)

    Google Scholar 

  87. Muñoz, L., Trujillo, L., Silva, S., Castelli, M., Vanneschi, L.: Evolving multidimensional transformations for symbolic regression with M3GP. Memetic Comput. 11(2), 111–126 (2019)

    Article  Google Scholar 

  88. Mustafa, M.T., Hassoon, K.I., Hussain, H.M., Abd, M.H.: Using water indices (NDWI, MNDWI, NDMI, WRI and AWEI) to detect physical and chemical parameters by apply remote sensing and GIS techniques. Int. J. Res.—Granthaalayah 5(10), 117–128 (2017)

    Google Scholar 

  89. Nagkoulis, N., Loukogeorgaki, E., Ghislanzoni, M.: Genetic algorithms-based optimum PV site selection minimizing visual disturbance. Sustainability 14(19) (2022)

    Google Scholar 

  90. NASA. Landsat 8 Bands. Accessed 25 Aug. 2022. https://landsat.gsfc.nasa.gov/landsat-8/landsat-8-bands

  91. Olson, R.S., Bartley, N., Urbanowicz, R.J., Moore, J.H.: Evaluation of a tree-based pipeline optimization tool for automating data science. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, GECCO ’16, pp. 485–492, New York, NY, USA. ACM (2016)

    Google Scholar 

  92. Omran, M.G.H., Salman, A., Engelbrecht, A.P.: Self-adaptive differential evolution. In: Computational Intelligence and Security, pp. 192–199. Springer, Berlin, Heidelberg (2005)

    Google Scholar 

  93. Parasuraman, K., Elshorbagy, A., Si, B.C.: Estimating saturated hydraulic conductivity using genetic programming. Soil Sci. Soc. Am. J. 71(6), 1676–1684 (2007)

    Google Scholar 

  94. Pei, W., Xue, B., Shang, L., Zhang, M.: New fitness functions in genetic programming for classification with high-dimensional unbalanced data. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 2779–2786. IEEE (2019)

    Google Scholar 

  95. Pereira, S.C., Lopes, C., Pedroso, J.P.: Mapping cashew orchards in cantanhez national park (Guinea-Bissau). Remote Sens. Appl.: Soc. Environ. 26, 100746 (2022)

    Google Scholar 

  96. Poli, R., Langdon, W.B., Mcphee, N.: A Field Guide to Genetic Programming. Lulu Enterprises ltd., UK, Jan. 2008

    Google Scholar 

  97. Puente, C., Olague, G., Smith, S.V., Bullock, S.H., Hinojosa-Corona, A., González-Botello, M.A.: A genetic programming approach to estimate vegetation cover in the context of soil erosion assessment. Photogramm. Eng. Remote Sens. 77(4), 363–376 (2011)

    Google Scholar 

  98. Quade, M., Abel, M., Shafi, K., Niven, R.K., Noack, B.R.: Prediction of dynamical systems by symbolic regression. Phys. Rev. E 94(1), (2016)

    Google Scholar 

  99. Rodrigues, N.M., Batista, J.E., La Cava, W., Vanneschi, L., Silva, S.: Slug: feature selection using genetic algorithms and genetic programming. In: Medvet, E., Pappa, G., Xue, B. (eds.) Genetic Programming, Cham, pp. 68–84. Springer International Publishing (2022)

    Google Scholar 

  100. Rodrigues, N.M., Batista, J.E., Silva, S.: Ensemble genetic programming. In: Hu, T., Lourenço, N., Medvet, E., Divina, F. (eds.), Genetic Programming, Cham, pp. 151–166. Springer International Publishing (2020)

    Google Scholar 

  101. Rolnick, D., Donti, P.L., Kaack, L.H., Kochanski, K., Lacoste, A., Sankaran, K., Ross, A.S., Milojevic-Dupont, N., Jaques, N., Waldman-Brown, A., Luccioni, A.S., Maharaj, T., Sherwin, E.D., Mukkavilli, K., Kording, K.P., Gomes, C.P., Ng, A.Y., Hassabis, D., Platt, J.C., Creutzig, F., Chayes, J., Bengio, Y.: Tackling climate change with machine learning. ACM Comput. Surv., 55(2) (2022)

    Google Scholar 

  102. Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W.: Monitoring vegetation systems in the great plains with ERTS. In: NASA Special Publication (1973)

    Google Scholar 

  103. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)

    Google Scholar 

  104. Saxena, N.K., Kumar, A.: Reactive power control in decentralized hybrid power system with STATCOM using GA, ANN and ANFIS methods. Int. J. Electr. Power Energy Syst. 83, 175–187 (2016)

    Google Scholar 

  105. Semet, Y., Berthelot, B., Glais, T., Isbérie, C., Varest., A.: Expert competitive traffic light optimization with evolutionary algorithms. In: Proceedings of the 5th International Conference on Vehicle Technology and Intelligent Transport Systems. SCITEPRESS—Science and Technology Publications (2019)

    Google Scholar 

  106. Shang, Y., Zheng, X., Li, J., Liu, D., Wang, P.: A comparative analysis of swarm intelligence and evolutionary algorithms for feature selection in SVM-based hyperspectral image classification. Remote Sens. 14(13), 3019 (2022)

    Google Scholar 

  107. Silva, S., Dignum, S., Vanneschi, L.: Operator equalisation for bloat free genetic programming and a survey of bloat control methods. Gen. Programm. Evol. Mach. 13(2), 197–238 (2011)

    Google Scholar 

  108. Silva, S., Ingalalli, V., Vinga, S., Carreiras, J.M.B., Melo, J.B., Castelli, M., Vanneschi, L., Gonçalves, I., Caldas, J.: Prediction of forest aboveground biomass: an exercise on avoiding overfitting. In: Applications of Evolutionary Computation, pp. 407–417. Springer Berlin Heidelberg (2013)

    Google Scholar 

  109. Silva, S., Muñoz, L., Trujillo, L., Ingalalli, V., Castelli, M., Vanneschi, L.: Multiclass classification through multidimensional clustering. In: Genetic Programming Theory and Practice XIII, pp. 219–239. Springer International Publishing (2016)

    Google Scholar 

  110. Silva, S., Tseng, Y.-T.: Classification of seafloor habitats using genetic programming. In: Lecture Notes in Computer Science, pp. 315–324. Springer, Berlin, Heidelberg (2008)

    Google Scholar 

  111. Silva, S., Vanneschi, L., Cabral, A.I.R., Vasconcelos, M.J.: A semi-supervised genetic programming method for dealing with noisy labels and hidden overfitting. Swarm Evol. Comput. 39, 323–338 (2018)

    Google Scholar 

  112. Silva, S., Vasconcelos, M.J., Melo, J.B.: Bloat free genetic programming versus classification trees for identification of burned areas in satellite imagery. In: Applications of Evolutionary Computation, pp. 272–281. Springer, Berlin, Heidelberg (2010)

    Google Scholar 

  113. Stanislawska, K., Krawiec, K., Kundzewicz, Z.W.: Modeling global temperature changes with genetic programming. Comput. Math. Appl. 64(12), 3717–3728 (2012)

    Google Scholar 

  114. Stolfi, D.H., Alba, E.: Greener routes with bio-inspired techniques. Green swarm. Appl. Soft Comput. 71, 952–963 (2018)

    Google Scholar 

  115. Taghizadeh-Mehrjardi, R., Ayoubi, S., Namazi, Z., Malone, B.P., Zolfaghari, A.A., Sadrabadi, F.R.: Prediction of soil surface salinity in arid region of central Iran using auxiliary variables and genetic programming. Arid Land Res. Manag. 30(1), 49–64 (2016)

    Google Scholar 

  116. Back, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York, NY (1996)

    Google Scholar 

  117. Trabucchi, M., Puente, C., Comin, F.A., Olague, G., Smith, S.V.: Mapping erosion risk at the basin scale in a mediterranean environment with opencast coal mines to target restoration actions. Reg. Environ. Change 12(4), 675–687 (2012)

    Google Scholar 

  118. Tran, B., Xue, B., Zhang, M.: Genetic programming for feature construction and selection in classification on high-dimensional data. Memet. Comput. 8(1), 3–15 (2015)

    Google Scholar 

  119. Tsanas, A., Xifara, A.: Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy Build. 49, 560–567 (2012)

    Google Scholar 

  120. Vadillo, J., Santana, R., Lozano, J.A.: When and how to fool explainable models (and humans) with adversarial examples (2021)

    Google Scholar 

  121. Vasconcelos, M., Silva, S., Tomé, M., Alvim, M., Pereira, J.: Spatial prediction of fire ignition probabilities: comparing logistic regression and neural networks. Photogram. Eng. Remote Sens. 67, 73–81, 01 (2001)

    Google Scholar 

  122. Viegas, F., Rocha, L., Gonçalves, M., Mourão, F., Sá, G., Salles, T., Andrade, G., Sandin, I.: A genetic programming approach for feature selection in highly dimensional skewed data. Neurocomputing 273, 554–569 (2018)

    Article  Google Scholar 

  123. Wen, C., Miao, L., Bi, Y., Zhang, S., Xue, B., Zhang, M., Zhou, Q., Wenbin, W.: An object-based genetic programming approach for cropland field extraction. Remote Sens. 14(5), 1275 (2022)

    Google Scholar 

  124. Wen, F., Zhang, G., Sun, L., Wang, X., Xiaowei, X.: A hybrid temporal association rules mining method for traffic congestion prediction. Comput. Ind. Eng. 130, 779–787 (2019)

    Google Scholar 

  125. Yue, W., Ma, W., Miao, Q., Wang, S.: Multimodal continuous ant colony optimization for multisensor remote sensing image registration with local search. Swarm Evol. Comput. 47, 89–95 (2019)

    Google Scholar 

  126. Yang, H., Du, Q.: Particle swarm optimization-based dimensionality reduction for hyperspectral image classification. In: 2011 IEEE International Geoscience and Remote Sensing Symposium. IEEE (2011)

    Google Scholar 

  127. Yang, Y., Xue, B., Jesson, L., Zhang, M.: Genetic programming for symbolic regression: a study on fish weight prediction. In: 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, June 2021

    Google Scholar 

  128. Zhang, Q.-S., Zhu, S.-C.: Visual interpretability for deep learning: a survey. Front. Inf. Technol. Electron. Eng. 19(1), 27–39 (2018)

    Google Scholar 

  129. Zhang, Yu., Tiňo, P., Leonardis, A., Tang, K.: A survey on neural network interpretability. IEEE Trans. Emerging Top. Comput. Intell. 5(5), 726–742 (2021)

    Article  Google Scholar 

  130. Zhang, Y., Zhou, Y., Jiang, S., Ning, S., Jin, J., Cui, Y., Wu, Z., Feng, H.: A simulation study using machine learning and formula methods to assess the soybean groundwater contribution in a drought-prone region. Water 14(19) (2022)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the FCT, Portugal, through funding of the LASIGE Research Unit (UIDB/00408/2020 and UIDP/00408/2020); João Batista was supported by PhD grant SFRH/BD/143972/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Batista, J.E., Silva, S. (2024). Evolutionary Machine Learning in Environmental Science. In: Banzhaf, W., Machado, P., Zhang, M. (eds) Handbook of Evolutionary Machine Learning. Genetic and Evolutionary Computation. Springer, Singapore. https://doi.org/10.1007/978-981-99-3814-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3814-8_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3813-1

  • Online ISBN: 978-981-99-3814-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics