Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Extracellular Vesicles in Brain Tumor Progression

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Brain tumors can be viewed as multicellular ‘ecosystems’ with increasingly recognized cellular complexity and systemic impact. While the emerging diversity of malignant disease entities affecting brain tissues is often described in reference to their signature alterations within the cellular genome and epigenome, arguably these cell-intrinsic changes can be regarded as hardwired adaptations to a variety of cell-extrinsic microenvironmental circumstances. Conversely, oncogenic events influence the microenvironment through their impact on the cellular secretome, including emission of membranous structures known as extracellular vesicles (EVs). EVs serve as unique carriers of bioactive lipids, secretable and non-secretable proteins, mRNA, non-coding RNA, and DNA and constitute pathway(s) of extracellular exit of molecules into the intercellular space, biofluids, and blood. EVs are also highly heterogeneous as reflected in their nomenclature (exosomes, microvesicles, microparticles) attempting to capture their diverse origin, as well as structural, molecular, and functional properties. While EVs may act as a mechanism of molecular expulsion, their non-random uptake by heterologous cellular recipients defines their unique roles in the intercellular communication, horizontal molecular transfer, and biological activity. In the central nervous system, EVs have been implicated as mediators of homeostasis and repair, while in cancer they may act as regulators of cell growth, clonogenicity, angiogenesis, thrombosis, and reciprocal tumor-stromal interactions. EVs produced by specific brain tumor cell types may contain the corresponding oncogenic drivers, such as epidermal growth factor receptor variant III (EGFRvIII) in glioblastoma (and hence are often referred to as ‘oncosomes’). Through this mechanism, mutant oncoproteins and nucleic acids may be transferred horizontally between cellular populations altering their individual and collective phenotypes. Oncogenic pathways also impact the emission rates, types, cargo, and biogenesis of EVs, as reflected by preliminary analyses pointing to differences in profiles of EV-regulating genes (vesiculome) between molecular subtypes of glioblastoma, and in other brain tumors. Molecular regulators of vesiculation can also act as oncogenes. These intimate connections suggest the context-specific roles of different EV subsets in the progression of specific brain tumors. Advanced efforts are underway to capture these events through the use of EVs circulating in biofluids as biomarker reservoirs and to guide diagnostic and therapeutic decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abd Elmageed ZY, Yang Y, Thomas R et al (2014) Neoplastic reprogramming of patient-derived adipose stem cells by prostate cancer cell-associated exosomes. Stem Cells 32:983–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7:834–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Nedawi K, Meehan B, Micallef J et al (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10:619–624

    Article  CAS  PubMed  Google Scholar 

  • Al-Nedawi K, Meehan B, Kerbel RS, Allison AC, Rak J (2009a) Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci USA 106:3794–3799

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Nedawi K, Meehan B, Rak J (2009b) Microvesicles: messengers and mediators of tumor progression. Cell Cycle 8:2014–2018

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Erviti L, Seow Y, Yin H et al (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345

    Article  CAS  PubMed  Google Scholar 

  • Alves TR, Lima FR, Kahn SA et al (2011) Glioblastoma cells: a heterogeneous and fatal tumor interacting with the parenchyma. Life Sci 89:532–539

    Article  CAS  PubMed  Google Scholar 

  • Andoniadou CL, Matsushima D, Mousavy Gharavy SN et al (2013) Sox2(+) stem/progenitor cells in the adult mouse pituitary support organ homeostasis and have tumor-inducing potential. Cell Stem Cell 13:433–445

    Article  CAS  PubMed  Google Scholar 

  • Antonyak MA, Li B, Boroughs LK et al (2011) Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells. Proc Natl Acad Sci USA 108:4852–4857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appin CL, Brat DJ (2015) Biomarker-driven diagnosis of diffuse gliomas. Mol Aspects Med 45:87–96

    Article  CAS  PubMed  Google Scholar 

  • Arscott WT, Tandle AT, Zhao S et al (2013) Ionizing radiation and glioblastoma exosomes: implications in tumor biology and cell migration. Transl Oncol 6:638–648

    Article  PubMed  PubMed Central  Google Scholar 

  • Atai NA, Balaj L, van Veen H et al (2013) Heparin blocks transfer of extracellular vesicles between donor and recipient cells. J Neurooncol 115:343–351

    Article  CAS  PubMed  Google Scholar 

  • Atay S, Banskota S, Crow J et al (2014) Oncogenic KIT-containing exosomes increase gastrointestinal stromal tumor cell invasion. Proc Natl Acad Sci USA 111:711–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkin-Smith GK, Tixeira R, Paone S et al (2015) A novel mechanism of generating extracellular vesicles during apoptosis via a beads-on-a-string membrane structure. Nat Commun 6:7439

    Article  PubMed  PubMed Central  Google Scholar 

  • Attwell D, Buchan AM, Charpak S et al (2010) Glial and neuronal control of brain blood flow. Nature 468:232–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balaj L, Lessard R, Dai L et al (2011) Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2:180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balaj L, Chen W, Liau LM et al (2012) BEAMing qRT-PCR analysis of IDH1 mutant in tumor microvesicles. J Extracell Vesicles 1:30

    Google Scholar 

  • Balaj L, Atai NA, Chen W et al (2015) Heparin affinity purification of extracellular vesicles. Sci Rep 5:10266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barault L, Amatu A, Bleeker FE et al (2015) Digital PCR quantification of MGMT methylation refines prediction of clinical benefit from alkylating agents in glioblastoma and metastatic colorectal cancer. Ann Oncol 26(9):1994–1999

    Article  CAS  PubMed  Google Scholar 

  • Bebawy M, Combes V, Lee E et al (2009) Membrane microparticles mediate transfer of P-glycoprotein to drug sensitive cancer cells. Leukemia 23:1643–1649

    Article  CAS  PubMed  Google Scholar 

  • Belting M, Wittrup A (2008) Nanotubes, exosomes, and nucleic acid-binding peptides provide novel mechanisms of intercellular communication in eukaryotic cells: implications in health and disease. J Cell Biol 183(7):1187–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergsmedh A, Szeles A, Henriksson M et al (2001) Horizontal transfer of oncogenes by uptake of apoptotic bodies. Proc Natl Acad Sci USA 98:6407–6411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berridge MV, Dong L, Neuzil J (2015) Mitochondrial DNA in tumor initiation, progression, and metastasis: role of horizontal mtDNA transfer. Cancer Res 75:3203–3208

    Article  CAS  PubMed  Google Scholar 

  • Bianco F, Perrotta C, Novellino L et al (2009) Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO J 28:1043–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biernat W, Huang H, Yokoo H, Kleihues P, Ohgaki H (2004) Predominant expression of mutant EGFR (EGFRvIII) is rare in primary glioblastomas. Brain Pathol 14:131–136

    Article  CAS  PubMed  Google Scholar 

  • Black WC, Welch HG (1993) Advances in diagnostic imaging and overestimations of disease prevalence and the benefits of therapy. N Engl J Med 328:1237–1243

    Article  CAS  PubMed  Google Scholar 

  • Bobrie A, Thery C (2013) Exosomes and communication between tumours and the immune system: are all exosomes equal? Biochem Soc Trans 41:263–267

    Article  CAS  PubMed  Google Scholar 

  • Bobrie A, Krumeich S, Reyal F et al (2012) Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Res 72:4920–4930

    Article  CAS  PubMed  Google Scholar 

  • Boccaccio C, Sabatino G, Medico E et al (2005) The MET oncogene drives a genetic programme linking cancer to haemostasis. Nature 434:396–400

    Article  CAS  PubMed  Google Scholar 

  • Boelens MC, Wu TJ, Nabet BY et al (2014) Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell 159:499–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolukbasi MF, Mizrak A, Ozdener GB et al (2012) miR-1289 and “Zipcode”-like sequence enrich mRNAs in microvesicles. Mol Ther Nucleic Acids 1:e10. doi:10.1038/mtna.2011.2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bonavia R, Inda MM, Cavenee WK, Furnari FB (2011) Heterogeneity maintenance in glioblastoma: a social network. Cancer Res 71:4055–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bondy ML, Scheurer ME, Malmer B et al (2008) Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium. Cancer 113:1953–1968

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouck N, Stellmach V, Hsu SC (1996) How tumors become angiogenic. Adv Cancer Res 69:135–174

    Article  CAS  PubMed  Google Scholar 

  • Bourkoula E, Mangoni D, Ius T et al (2014) Glioma-associated stem cells: a novel class of tumor-supporting cells able to predict prognosis of human low-grade gliomas. Stem Cells 32:1239–1253

    Article  CAS  PubMed  Google Scholar 

  • Bozzuto G, Toccacieli L, Mazzoleni S et al (2014) Brain tumor stem cell dancing. Ann Ist Super Sanita 50:286–290

    PubMed  Google Scholar 

  • Brash DE (2015) Cancer. Preprocancer. Science 348:867–868

    Article  CAS  PubMed  Google Scholar 

  • Brat DJ, Van Meir EG (2004) Vaso-occlusive and prothrombotic mechanisms associated with tumor hypoxia, necrosis, and accelerated growth in glioblastoma. Lab Invest 84:397–405

    Article  CAS  PubMed  Google Scholar 

  • Brat DJ, Verhaak RG, Aldape KD et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372:2481–2498

    Article  CAS  PubMed  Google Scholar 

  • Brockmann MA, Bender B, Plaxina E et al (2011) Differential effects of tumor-platelet interaction in vitro and in vivo in glioblastoma. J Neurooncol 105:45–56

    Article  CAS  PubMed  Google Scholar 

  • Bronisz A, Wang Y, Nowicki MO et al (2014) Extracellular vesicles modulate the glioblastoma microenvironment via a tumor suppression signaling network directed by miR-1. Cancer Res 74:738–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burrell K, Singh S, Jalali S, Hill RP, Zadeh G (2014) VEGF regulates region-specific localization of perivascular bone marrow-derived cells in glioblastoma. Cancer Res 74:3727–3739

    Article  CAS  PubMed  Google Scholar 

  • Bussolati B, Grange C, Camussi G (2011) Tumor exploits alternative strategies to achieve vascularization. FASEB J 25:2874–2882

    Article  CAS  PubMed  Google Scholar 

  • Cai J, Han Y, Ren H et al (2013) Extracellular vesicle-mediated transfer of donor genomic DNA to recipient cells is a novel mechanism for genetic influence between cells. J Mol Cell Biol 5:227–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai J, Wu G, Tan X et al (2014) Transferred BCR/ABL DNA from K562 extracellular vesicles causes chronic myeloid leukemia in immunodeficient mice. PLoS One 9:e105200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caine GD, Weller RO, Davis BE, Cox S (1980) Mechanisms of uptake and the fate of serum proteins and horseradish peroxidase in cultured human glioma cells. A light- and electron-immunocytochemical study. Acta Neuropathol 52:169–177

    Article  CAS  PubMed  Google Scholar 

  • Camacho L, Guerrero P, Marchetti D (2013) MicroRNA and protein profiling of brain metastasis competent cell-derived exosomes. PLoS One 8:e73790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmeliet P, Ferreira V, Breier G et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439

    Article  CAS  PubMed  Google Scholar 

  • Castellana D, Zobairi F, Martinez MC et al (2009) Membrane microvesicles as actors in the establishment of a favorable prostatic tumoral niche: a role for activated fibroblasts and CX3CL1-CX3CR1 axis. Cancer Res 69:785–793

    Article  CAS  PubMed  Google Scholar 

  • Chairoungdua A, Smith DL, Pochard P, Hull M, Caplan MJ (2010) Exosome release of beta-catenin: a novel mechanism that antagonizes Wnt signaling. J Cell Biol 190:1079–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaput N, Thery C (2011) Exosomes: immune properties and potential clinical implementations. Semin Immunopathol 33:419–440

    Article  CAS  PubMed  Google Scholar 

  • Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H (2012) The brain tumor microenvironment. Glia 60:502–514

    Article  PubMed  Google Scholar 

  • Chen C, Skog J, Hsu CH et al (2010) Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip 10:505–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Li Y, Yu TS et al (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488:522–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WW, Balaj L, Liau LM et al (2013) BEAMing and droplet digital PCR analysis of mutant IDH1 mRNA in glioma patient serum and cerebrospinal fluid extracellular vesicles. Mol Ther Nucleic Acids 2:e109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng L, Huang Z, Zhou W et al (2013) Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153:139–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chevillet JR, Kang Q, Ruf IK et al (2014) Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl Acad Sci USA 111:14888–14893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinot OL, Reardon DA (2014) The future of antiangiogenic treatment in glioblastoma. Curr Opin Neurol 27:675–682

    Article  CAS  PubMed  Google Scholar 

  • Chittiboina P, Connor DE Jr, Caldito G et al (2012) Occult tumors presenting with negative imaging: analysis of the literature. J Neurosurg 116:1195–1203

    Article  PubMed  Google Scholar 

  • Christianson HC, Svensson KJ, van Kuppevelt TH, Li JP, Belting M (2013) Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci USA 110:17380–17385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciravolo V, Huber V, Ghedini GC et al (2012) Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. J Cell Physiol 227:658–667

    Article  CAS  PubMed  Google Scholar 

  • Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289

    Article  CAS  PubMed  Google Scholar 

  • Corrado C, Raimondo S, Saieva L et al (2014) Exosome-mediated crosstalk between chronic myelogenous leukemia cells and human bone marrow stromal cells triggers an interleukin 8-dependent survival of leukemia cells. Cancer Lett 348:71–76

    Article  CAS  PubMed  Google Scholar 

  • Cossetti C, Smith JA, Iraci N et al (2012) Extracellular membrane vesicles and immune regulation in the brain. Front Physiol 3:117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa-Silva B, Aiello NM, Ocean AJ et al (2015) Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 17:816–826

    Article  CAS  PubMed  Google Scholar 

  • Crowley E, Di NF, Loupakis F, Bardelli A (2013) Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol 10:472–484

    Article  CAS  PubMed  Google Scholar 

  • Das J, Ivanov I, Montermini L et al (2015) An electrochemical clamp assay for direct, rapid analysis of circulating nucleic acids in serum. Nat Chem 7:569–575

    Article  CAS  PubMed  Google Scholar 

  • D’Asti E, Huang A, Rak J (2012) Downregulation of tissue factor (TF) in medulloblastoma cells expressing miR-520g. In: Proceedings of Keystone Syposia, Snowmass, CO, March 30, 2012

  • D’Asti E, Kool M, Pfister SM, Rak J (2014) Coagulation and angiogenic gene expression profiles are defined by molecular subgroups of medulloblastoma: evidence for growth factor-thrombin cross-talk. J Thromb Haemost 12:1838–1849

    Article  PubMed  CAS  Google Scholar 

  • D’Asti E, Huang A, Kool M et al (2016) Tissue factor regulation by miR-520g in primitive neuronal brain tumor cells: a possible link between oncomirs and the vascular tumor microenvironment. Am J Pathol 186:446–459

    Article  PubMed  CAS  Google Scholar 

  • de Vrij J, Maas S, Kwappenberg K et al (2015) Glioblastoma-derived extracellular vesicles modify the phenotype of monocytic cells. Int J Cancer 137:1630–1642

    Article  PubMed  CAS  Google Scholar 

  • Del Conde I, Shrimpton CN, Thiagarajan P, Lopez JA (2005) Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood 106:1604–1611

    Article  PubMed  CAS  Google Scholar 

  • Demory BM, Higginbotham JN, Franklin JL et al (2013) Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. Mol Cell Proteomics 12:343–355

    Article  CAS  Google Scholar 

  • Di Vizio D, Kim J, Hager MH et al (2009) Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res 69:5601–5609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dow LE, O’Rourke KP, Simon J et al (2015) Apc restoration promotes cellular differentiation and reestablishes crypt homeostasis in colorectal cancer. Cell 161:1539–1552

    Article  CAS  PubMed  Google Scholar 

  • Eckel-Passow JE, Lachance DH, Molinaro AM et al (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372:2499–2508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • EL Andaloussi AS, Mager I, Breakefield XO, Wood MJ (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12:347–357

    Article  CAS  PubMed  Google Scholar 

  • El-Andaloussi S, Lee Y, Lakhal-Littleton S et al (2012) Exosome-mediated delivery of siRNA in vitro and in vivo. Nat Protoc 7:2112–2126

    Article  CAS  PubMed  Google Scholar 

  • Epple LM, Griffiths SG, Dechkovskaia AM et al (2012) Medulloblastoma exosome proteomics yield functional roles for extracellular vesicles. PLoS One 7:e42064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escrevente C, Keller S, Altevogt P, Costa J (2011) Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer 11:108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falchi AM, Sogos V, Saba F et al (2013) Astrocytes shed large membrane vesicles that contain mitochondria, lipid droplets and ATP. Histochem Cell Biol 139:221–231

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Garnier D, Lee TH et al (2015) PML–RARa modulates the vascular signature of extracellular vesicles released by acute promyelocytic leukemia cells. Angiogenesis 19(1):25–38

    Article  PubMed  CAS  Google Scholar 

  • Faury D, Nantel A, Dunn SE et al (2007) Molecular profiling identifies prognostic subgroups of pediatric glioblastoma and shows increased YB-1 expression in tumors. J Clin Oncol 25:1196–1208

    Article  CAS  PubMed  Google Scholar 

  • Finak G, Bertos N, Pepin F et al (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14:518–527

    Article  CAS  PubMed  Google Scholar 

  • Fitzner D, Schnaars M, van Rossum RD et al (2011) Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J Cell Sci 124:447–458

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286

    Article  CAS  PubMed  Google Scholar 

  • Fong MY, Zhou W, Liu L et al (2015) Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol 17:183–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foote MB, Papadopoulos N, Diaz LA Jr (2015) Genetic classification of gliomas: refining histopathology. Cancer Cell 28:9–11

    Article  CAS  PubMed  Google Scholar 

  • Franklin JL, Beckler MD, Higginbotham JN, Coffey RJ Jr (2012) Exosomes from mutant KRAS cells transfer KRAS and transform wild type KRAS recipient cells. J Extracell Vesicles 1:26

    Google Scholar 

  • Friedmann-Morvinski D, Bushong EA, Ke E et al (2012) Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 338:1080–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fruhbeis C, Frohlich D, Kuo WP, Kramer-Albers EM (2013a) Extracellular vesicles as mediators of neuron-glia communication. Front Cell Neurosci 7:182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fruhbeis C, Frohlich D, Kuo WP et al (2013b) Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol 11:e1001604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gabriel K, Ingram A, Austin R et al (2013) Regulation of the tumor suppressor PTEN through exosomes: a diagnostic potential for prostate cancer. PLoS One 8:e70047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gan HK, Cvrljevic AN, Johns TG (2013) The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. FEBS J 280:5350–5370

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Barros M, Paris F, Cordon-Cardo C et al (2003) Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300:1155–1159

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Olmo DC, Dominguez C, Garcia-Arranz M et al (2010) Cell-free nucleic acids circulating in the plasma of colorectal cancer patients induce the oncogenic transformation of susceptible cultured cells. Cancer Res 70:560–567

    Article  CAS  PubMed  Google Scholar 

  • Garnier D, Magnus N, Lee TH et al (2012) Cancer cells induced to express mesenchymal phenotype release exosome-like extracellular vesicles carrying tissue factor. J Biol Chem 287:43565–43572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garnier D, Magnus N, Meehan B, Kislinger T, Rak J (2013a) Qualitative changes in the proteome of extracellular vesicles accompanying cancer cell transition to mesenchymal state. Exp Cell Res 319:2747–2757

    Article  CAS  PubMed  Google Scholar 

  • Garnier D, Jabado N, Rak J (2013b) Extracellular vesicles as prospective carriers of oncogenic protein signatures in adult and paediatric brain tumours. Proteomics 13:1595–1607

    Article  CAS  PubMed  Google Scholar 

  • Geddings JE, Mackman N (2013) Tumor-derived tissue factor-positive microparticles and venous thrombosis in cancer patients. Blood 122:1873–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerlinger M, Rowan AJ, Horswell S et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892

    Article  CAS  PubMed  Google Scholar 

  • Ghajar CM, Peinado H, Mori H et al (2013) The perivascular niche regulates breast tumour dormancy. Nat Cell Biol 15:807–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh AK, Secreto CR, Knox TR et al (2010) Circulating microvesicles in B-cell chronic lymphocytic leukemia can stimulate marrow stromal cells: implications for disease progression. Blood 115:1755–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O (2009) Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol 11:1143–1149

    Article  CAS  PubMed  Google Scholar 

  • Gilbertson RJ, Rich JN (2007) Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 7:733–736

    Article  CAS  PubMed  Google Scholar 

  • Gould SJ, Raposo G (2013) As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles. doi:10.3402/jev.v2i0.20389

    PubMed  PubMed Central  Google Scholar 

  • Graner MW, Alzate O, Dechkovskaia AM et al (2009) Proteomic and immunologic analyses of brain tumor exosomes. FASEB J 23:1541–1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grange C, Tapparo M, Collino F et al (2011) Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res 71:5346–5356

    Article  CAS  PubMed  Google Scholar 

  • Guescini M, Genedani S, Stocchi V, Agnati LF (2010) Astrocytes and Glioblastoma cells release exosomes carrying mtDNA. J Neural Transm 117:1–4

    Article  CAS  PubMed  Google Scholar 

  • Gyorgy B, Szabo TG, Pasztoi M et al (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68:2667–2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gyorgy B, Hung ME, Breakefield XO, Leonard JN (2015) Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annu Rev Pharmacol Toxicol 55:439–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harding C, Heuser J, Stahl P (1983) Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 97:329–339

    Article  CAS  PubMed  Google Scholar 

  • Harshyne LA, Hooper KM, Andrews EG et al (2015) Glioblastoma exosomes and IGF-1R/AS-ODN are immunogenic stimuli in a translational research immunotherapy paradigm. Cancer Immunol Immunother 64:299–309

    Article  CAS  PubMed  Google Scholar 

  • Hendrix A, Maynard D, Pauwels P et al (2010) Effect of the secretory small GTPase Rab27B on breast cancer growth, invasion, and metastasis. J Natl Cancer Inst 102:866–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heppner GH (1989) Tumor cell societies. J Natl Cancer Inst 81:648–649

    Article  CAS  PubMed  Google Scholar 

  • Heyn C, Ronald JA, Ramadan SS et al (2006) In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn Reson Med 56:1001–1010

    Article  PubMed  Google Scholar 

  • Hochberg F, Toniolo P, Cole P (1984) Head trauma and seizures as risk factors of glioblastoma. Neurology 34:1511–1514

    Article  CAS  PubMed  Google Scholar 

  • Hochberg FH, Atai NA, Gonda D et al (2014) Glioma diagnostics and biomarkers: an ongoing challenge in the field of medicine and science. Expert Rev Mol Diagn 14:439–452

    Article  CAS  PubMed  Google Scholar 

  • Hoelzinger DB, Demuth T, Berens ME (2007) Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J Natl Cancer Inst 99:1583–1593

    Article  CAS  PubMed  Google Scholar 

  • Holmgren L (2010) Horizontal gene transfer: you are what you eat. Biochem Biophys Res Commun 396:147–151

    Article  CAS  PubMed  Google Scholar 

  • Holmgren L, Szeles A, Rajnavolgyi E et al (1999) Horizontal transfer of DNA by the uptake of apoptotic bodies. Blood 93:3956–3963

    CAS  PubMed  Google Scholar 

  • Hood JL, San RS, Wickline SA (2011) Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res 71:3792–3801

    Article  CAS  PubMed  Google Scholar 

  • Hsu C, Morohashi Y, Yoshimura S et al (2010) Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol 189:223–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inda MM, Bonavia R, Mukasa A et al (2010) Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes Dev 24:1731–1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Italiano JE Jr, Richardson JL, Patel-Hett S et al (2008) Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood 111:1227–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janowska-Wieczorek A, Marquez-Curtis LA, Wysoczynski M, Ratajczak MZ (2006) Enhancing effect of platelet-derived microvesicles on the invasive potential of breast cancer cells. Transfusion 46:1199–1209

    Article  PubMed  Google Scholar 

  • Jia S, Zocco D, Samuels ML et al (2014) Emerging technologies in extracellular vesicle-based molecular diagnostics. Expert Rev Mol Diagn 14:307–321

    Article  CAS  PubMed  Google Scholar 

  • Johnstone RM (2006) Exosomes biological significance: a concise review. Blood Cells Mol Dis 36:315–321

    Article  CAS  PubMed  Google Scholar 

  • Kahlert C, Melo SA, Protopopov A et al (2014) Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem 289:3869–3875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalra H, Simpson RJ, Ji H et al (2012) Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol 10:e1001450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanada M, Bachmann MH, Hardy JW et al (2015) Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc Natl Acad Sci USA 112:E1433–E1442

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katakowski M, Buller B, Zheng X et al (2013) Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett 335:201–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kieran MW, Walker D, Frappaz D, Prados M (2010) Brain tumors: from childhood through adolescence into adulthood. J Clin Oncol 28:4783–4789

    Article  PubMed  Google Scholar 

  • Koch R, Demant M, Aung T et al (2014) Populational equilibrium through exosome-mediated Wnt signaling in tumor progression of diffuse large B-cell lymphoma. Blood 123:2189–2198

    Article  CAS  PubMed  Google Scholar 

  • Kool M, Korshunov A, Remke M et al (2012) Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol 123:473–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosaka N, Iguchi H, Yoshioka Y et al (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285:17442–17452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kravchenko-Balasha N, Wang J, Remacle F, Levine RD, Heath JR (2014) Glioblastoma cellular architectures are predicted through the characterization of two-cell interactions. Proc Natl Acad Sci USA 111:6521–6526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kucharzewska P, Christianson HC, Welch JE et al (2013) Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci USA 110:7312–7317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai CP, Breakefield XO (2012) Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front Physiol 3:228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai CP, Tannous BA, Breakefield XO (2014a) Noninvasive in vivo monitoring of extracellular vesicles. Methods Mol Biol 1098:249–258

    Article  CAS  PubMed  Google Scholar 

  • Lai CP, Mardini O, Ericsson M et al (2014b) Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano 8:483–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai CP, Kim EY, Badr CE et al (2015) Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat Commun 6:7029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CL, Rich JN (2015) Cancer stem cells in glioblastoma. Genes Dev 29:1203–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazaro-Ibanez E, Sanz-Garcia A, Visakorpi T et al (2014) Different gDNA content in the subpopulations of prostate cancer extracellular vesicles: apoptotic bodies, microvesicles, and exosomes. Prostate 74:1379–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee T-H, Rak J (2011) Unpublished observation

  • Lee TH, D’Asti E, Magnus N et al (2011) Microvesicles as mediators of intercellular communication in cancer—the emerging science of cellular ‘debris’. Semin Immunopathol 33:455–467

    Article  PubMed  Google Scholar 

  • Lee T-H, Montermini L, Meehan B, et al. (2013) Collateral cell transformation by exosome-like extracellular vesicles harbouring mutant H-ras Oncogene. J Extracell Vesicles (ISEV 2013 - Meeting Abstracts) 2013

  • Lee TH, Chennakrishnaiah S, Audemard E et al (2014) Oncogenic ras-driven cancer cell vesiculation leads to emission of double-stranded DNA capable of interacting with target cells. Biochem Biophys Res Commun 451:295–301

    Article  CAS  PubMed  Google Scholar 

  • Leith J, Michelson TS, Faulkner LE, Bliven SF (1987) Growth properties of artificial heterogenous human colon tumors. Cancer Res 47:1045–1051

    CAS  PubMed  Google Scholar 

  • Lespagnol A, Duflaut D, Beekman C et al (2008) Exosome secretion, including the DNA damage-induced p53-dependent secretory pathway, is severely compromised in TSAP6/Steap3-null mice. Cell Death Differ 15:1723–1733

    Article  CAS  PubMed  Google Scholar 

  • Li B, Antonyak MA, Zhang J, Cerione RA (2012) RhoA triggers a specific signaling pathway that generates transforming microvesicles in cancer cells. Oncogene 31:4740–4749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim JW, Mathias RA, Kapp EA et al (2012) Restoration of full-length APC protein in SW480 colon cancer cells induces exosome-mediated secretion of DKK-4. Electrophoresis 33:1873–1880

    Article  CAS  PubMed  Google Scholar 

  • Lo Cicero A, Schiera G, Proia P et al (2011) Oligodendroglioma cells shed microvesicles which contain TRAIL as well as molecular chaperones and induce cell death in astrocytes. Int J Oncol 39:1353–1357

    CAS  PubMed  Google Scholar 

  • Lorger M (2012) Tumor microenvironment in the brain. Cancers (Basel) 4:218–243

    Article  Google Scholar 

  • Louveau A, Smirnov I, Keyes TJ et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523:337–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luga V, Zhang L, Viloria-Petit AM et al (2012) Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151:1542–1556

    Article  CAS  PubMed  Google Scholar 

  • Macarthur KM, Kao GD, Chandrasekaran S et al (2014) Detection of brain tumor cells in the peripheral blood by a telomerase promoter-based assay. Cancer Res 74:2152–2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magnus N, Gerges N, Jabado N, Rak J (2013) Coagulation-related gene expression profile in glioblastoma is defined by molecular disease subtype. J Thromb Haemost 11:1197–1200

    Article  CAS  PubMed  Google Scholar 

  • Magnus N, Garnier D, Meehan B et al (2014a) Tissue factor expression provokes escape from tumor dormancy and leads to genomic alterations. Proc Natl Acad Sci USA 111:3544–3549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magnus N, D’Asti E, Meehan B, Garnier D, Rak J (2014b) Oncogenes and the coagulation system–forces that modulate dormant and aggressive states in cancer. Thromb Res 133(Suppl 2):S1–S9

    Article  CAS  PubMed  Google Scholar 

  • Maguire CA, Balaj L, Sivaraman S et al (2012) Microvesicle-associated AAV vector as a novel gene delivery system. Mol Ther 20:960–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maguire JE, Silva M, Nguyen KC et al (2015) Myristoylated CIL-7 regulates ciliary extracellular vesicle biogenesis. Mol Biol Cell 26:2823–2832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmoudi K, Ezrin A, Hadjipanayis C (2015) Small extracellular vesicles as tumor biomarkers for glioblastoma. Mol Aspects Med 45:97–102

    Article  CAS  PubMed  Google Scholar 

  • Mao P, Joshi K, Li J et al (2013) Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc Natl Acad Sci USA 110:8644–8649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martincorena I, Roshan A, Gerstung M et al (2015) Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348:880–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marzesco AM (2013) Prominin-1-containing membrane vesicles: origins, formation, and utility. Adv Exp Med Biol 777:41–54. doi:10.1007/978-1-4614-5894-4_3

    Article  CAS  PubMed  Google Scholar 

  • Mathivanan S, Fahner CJ, Reid GE, Simpson RJ (2011) ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res 40:D1241–D1244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Melo SA, Sugimoto H, O’Connell JT et al (2014) Cancer exosomes perform cell-independent MicroRNA biogenesis and promote tumorigenesis. Cancer Cell 26:707–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melo SA, Luecke LB, Kahlert C et al (2015) Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523:177–182

    Article  CAS  PubMed  Google Scholar 

  • Minciacchi VR, Freeman MR, Di VD (2015) Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol 40:41–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miranda A, Funes JM, Sanchez N et al (2015) Oncogenic transformation can orchestrate immune evasion and inflammation in human mesenchymal stem cells independently of extrinsic immune-selective pressure. Cancer Res 75(15):3032–3042

    Article  CAS  PubMed  Google Scholar 

  • Mizrak A, Bolukbasi MF, Ozdener GB et al (2013) Genetically engineered microvesicles carrying suicide mRNA/protein inhibit schwannoma tumor growth. Mol Ther 21:101–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohankumar KM, Currle DS, White E et al (2015) An in vivo screen identifies ependymoma oncogenes and tumor-suppressor genes. Nat Genet 47:878–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montermini L, Meehan B, Garnier D et al (2015) Inhibition of oncogenic epidermal growth factor receptor kinase triggers release of exosome-like extracellular vesicles and impacts their phosphoprotein and DNA content. J Biol Chem 290(40):24534–24546

    Article  CAS  PubMed  Google Scholar 

  • Moore PS, Chang Y (2010) Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nat Rev Cancer 10:878–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison HA, Dionne H, Rusten TE et al (2008) Regulation of early endosomal entry by the Drosophila tumor suppressors Rabenosyn and Vps45. Mol Biol Cell 19:4167–4176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison LC, McClelland R, Aiken C et al (2013) Deconstruction of medulloblastoma cellular heterogeneity reveals differences between the most highly invasive and self-renewing phenotypes. Neoplasia 15:384–398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mulcahy LA, Pink RC, Carter DR (2014) Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. doi:10.3402/jev.v3.24641

    PubMed  PubMed Central  Google Scholar 

  • Muller C, Holtschmidt J, Auer M et al (2014) Hematogenous dissemination of glioblastoma multiforme. Sci Transl Med 6:247ra101

    Article  PubMed  CAS  Google Scholar 

  • Muller L, Muller-Haegele S, Mitsuhashi M et al (2015) Exosomes isolated from plasma of glioma patients enrolled in a vaccination trial reflect antitumor immune activity and might predict survival. Oncoimmunology 4:e1008347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mullighan CG, Phillips LA, Su X et al (2008) Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science 322:1377–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muralidharan-Chari V, Clancy J, Plou C et al (2009) ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol 19:1875–1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano I, Garnier D, Minata M, Rak J (2015) Extracellular vesicles in the biology of brain tumour stem cells—implications for inter-cellular communication, therapy and biomarker development. Semin Cell Dev Biol 40:17–26

    Article  CAS  PubMed  Google Scholar 

  • Nam KT, Lee HJ, Smith JJ et al (2010) Loss of Rab25 promotes the development of intestinal neoplasia in mice and is associated with human colorectal adenocarcinomas. J Clin Invest 120:840–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noerholm M, Balaj L, Limperg T et al (2012) RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls. BMC Cancer 12:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Northcott PA, Korshunov A, Pfister SM, Taylor MD (2012) The clinical implications of medulloblastoma subgroups. Nat Rev Neurol 8:340–351

    Article  CAS  PubMed  Google Scholar 

  • Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194:23–28

    Article  CAS  PubMed  Google Scholar 

  • Oh EY, Christensen SM, Ghanta S et al (2015) Extensive rewiring of epithelial-stromal co-expression networks in breast cancer. Genome Biol 16:128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohgaki H, Kleihues P (2013) The definition of primary and secondary glioblastoma. Clin Cancer Res 19:764–772

    Article  CAS  PubMed  Google Scholar 

  • Ono M, Kosaka N, Tominaga N et al (2014) Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci Signal 7:ra63

    Article  PubMed  CAS  Google Scholar 

  • Ostenfeld MS, Jeppesen DK, Laurberg JR et al (2014) Cellular disposal of miR23b by RAB27-dependent exosome release is linked to acquisition of metastatic properties. Cancer Res 74:5758–5771

    Article  CAS  PubMed  Google Scholar 

  • Ostrowski M, Carmo NB, Krumeich S et al (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12:19–30

    Article  CAS  PubMed  Google Scholar 

  • Osswald M, Jung E, Sahm F et al (2015) Brain tumour cells interconnect to a functional and resistant network. Nature 528(7580):93–98

    CAS  PubMed  Google Scholar 

  • Pan BT, Johnstone RM (1983) Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33:967–978

    Article  CAS  PubMed  Google Scholar 

  • Parker NR, Khong P, Parkinson JF, Howell VM, Wheeler HR (2015) Molecular heterogeneity in glioblastoma: potential clinical implications. Front Oncol 5:55

    PubMed  PubMed Central  Google Scholar 

  • Patel AP, Tirosh I, Trombetta JJ et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344:1396–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peinado H, Aleckovic M, Lavotshkin S et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18:833–891

    Article  CAS  Google Scholar 

  • Perry JR (2012) Thromboembolic disease in patients with high-grade glioma. Neuro Oncol 14(Suppl 4):iv73–iv80. doi:10.1093/neuonc/nos197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips HS, Kharbanda S, Chen R et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173

    Article  CAS  PubMed  Google Scholar 

  • Piccin A, Murphy WG, Smith OP (2007) Circulating microparticles: pathophysiology and clinical implications. Blood Rev 21:157–171

    Article  CAS  PubMed  Google Scholar 

  • Pilzer D, Fishelson Z (2005) Mortalin/GRP75 promotes release of membrane vesicles from immune attacked cells and protection from complement-mediated lysis. Int Immunol 17:1239–1248

    Article  CAS  PubMed  Google Scholar 

  • Poste G, Nicolson GL (1980) Arrest and metastasis of blood-borne tumor cells are modified by fusion of plasma membrane vesicles from highly metastatic cells. Proc Natl Acad Sci USA 77:399–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prada I, Furlan R, Matteoli M, Verderio C (2013) Classical and unconventional pathways of vesicular release in microglia. Glia 61:1003–1017

    Article  PubMed  Google Scholar 

  • Putz U, Howitt J, Doan A et al (2012a) The tumor suppressor PTEN is exported in exosomes and has phosphatase activity in recipient cells. Sci Signal 5:ra70

    Article  PubMed  CAS  Google Scholar 

  • Putz U, Doan A, Tan S-S (2012b) The tumor suppressor PTEN is transported in exosomes for extracellular phosphatase activity. J Extracell Vesicles 1:78

    Google Scholar 

  • Raab-Traub N (2012) Novel mechanisms of EBV-induced oncogenesis. Curr Opin Virol 2:453–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajendran L, Bali J, Barr MM et al (2014) Emerging roles of extracellular vesicles in the nervous system. J Neurosci 34:15482–15489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rak J (1989) Possible role of tumour stem - end cell interaction in metastasis. Med Hypoth 29:17–19

    Article  CAS  Google Scholar 

  • Rak J (2006) Is cancer stem cell a cell, or a multicellular unit capable of inducing angiogenesis? Med Hypotheses 66:601–604

    Article  CAS  PubMed  Google Scholar 

  • Rak J (2009) Ras oncogenes and tumour vascular interface. In: Thomas-Tikhonenko A (ed) Cancer genome and tumor microenvironment. Springer, New York, pp 133–165

    Google Scholar 

  • Rak J (2013) Extracellular vesicles—biomarkers and effectors of the cellular interactome in cancer. Front Pharmacol 4:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rak J, Mitsuhashi Y, Bayko L et al (1995) Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res 55:4575–4580

    CAS  PubMed  Google Scholar 

  • Ramnarain DB, Park S, Lee DY et al (2006) Differential gene expression analysis reveals generation of an autocrine loop by a mutant epidermal growth factor receptor in glioma cells. Cancer Res 66:867–874

    Article  CAS  PubMed  Google Scholar 

  • Raposo G, Nijman HW, Stoorvogel W et al (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183:1161–1172

    Article  CAS  PubMed  Google Scholar 

  • Ratajczak J, Miekus K, Kucia M et al (2006a) Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20:847–856

    Article  CAS  PubMed  Google Scholar 

  • Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ (2006b) Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20:1487–1495

    Article  CAS  PubMed  Google Scholar 

  • Reardon DA, Schuster JM, Tran DD et al (2015) 107 ReACT: overall survival from a randomized phase II study of rindopepimut (CDX-110) plus bevacizumab in relapsed glioblastoma. Neurosurgery 62(Suppl 1):198–199

    Article  Google Scholar 

  • Redzic JS, Balaj L, van der Vos KE, Breakefield XO (2014) Extracellular RNA mediates and marks cancer progression. Semin Cancer Biol 28:14–23

    Article  CAS  PubMed  Google Scholar 

  • Ridder K, Keller S, Dams M et al (2014) Extracellular vesicle-mediated transfer of genetic information between the hematopoietic system and the brain in response to inflammation. PLoS Biol 12:e1001874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ridder K, Sevko A, Heide J et al (2015) Extracellular vesicle-mediated transfer of functional RNA in the tumor microenvironment. Oncoimmunology 19(4):e1008371

    Article  CAS  Google Scholar 

  • Robbins PD, Morelli AE (2014) Regulation of immune responses by extracellular vesicles. Nat Rev Immunol 14:195–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roccaro AM, Sacco A, Maiso P et al (2013) BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest 123:1542–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santiago-Dieppa DR, Steinberg J, Gonda D et al (2014) Extracellular vesicles as a platform for ‘liquid biopsy’ in glioblastoma patients. Expert Rev Mol Diagn 14:819–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sartori MT, Della PA, Ballin A et al (2011) Prothrombotic state in glioblastoma multiforme: an evaluation of the procoagulant activity of circulating microparticles. J Neurooncol 104:225–231

    Article  CAS  PubMed  Google Scholar 

  • Schmitz N, Wu HS (2015) Advances in the treatment of secondary CNS lymphoma. J Clin Oncol 33(33):3851–3853

    Article  CAS  PubMed  Google Scholar 

  • Schnoor R, Maas SL, Broekman ML (2015) Heparin in malignant glioma: review of preclinical studies and clinical results. J Neurooncol 124:151–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartzentruber J, Korshunov A, Liu XY et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:226–231

    Article  CAS  PubMed  Google Scholar 

  • Schwarzenbach H, Hoon DS, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11:426–437

    Article  CAS  PubMed  Google Scholar 

  • Seoane J, De Mattos-Arruda L (2014) Escaping out of the brain. Cancer Discov 4:1259–1261

    Article  CAS  PubMed  Google Scholar 

  • Shao H, Chung J, Balaj L et al (2012) Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med 18:1835–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao H, Chung J, Lee K et al (2015) Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat Commun 6:6999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheldon H, Heikamp E, Turley H et al (2010) New mechanism for Notch signaling to endothelium at a distance by Delta-like 4 incorporation into exosomes. Blood 116:2385–2394

    Article  CAS  PubMed  Google Scholar 

  • Shen B, Wu N, Yang JM, Gould SJ (2011) Protein targeting to exosomes/microvesicles by plasma membrane anchors. J Biol Chem 286:14383–14395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimoda M, Principe S, Jackson HW et al (2014) Loss of the Timp gene family is sufficient for the acquisition of the CAF-like cell state. Nat Cell Biol 16(9):889–901

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  CAS  PubMed  Google Scholar 

  • Skog J, Wurdinger T, van Rijn S et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snuderl M, Fazlollahi L, Le LP et al (2011) Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell 20:810–817

    Article  CAS  PubMed  Google Scholar 

  • Sottoriva A, Spiteri I, Piccirillo SG et al (2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA 110:4009–4014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza-Schorey C, Clancy JW (2012) Tumor-derived microvesicles: shedding light on novel microenvironment modulators and prospective cancer biomarkers. Genes Dev 26:1287–1299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sowers JL, Johnson KM, Conrad C, Patterson JT, Sowers LC (2014) The role of inflammation in brain cancer. Adv Exp Med Biol 816:75–105

    Article  CAS  PubMed  Google Scholar 

  • Sparmann A, Bar-Sagi D (2004) Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6:447–458

    Article  CAS  PubMed  Google Scholar 

  • Steeg PS, Camphausen KA, Smith QR (2011) Brain metastases as preventive and therapeutic targets. Nat Rev Cancer 11:352–363

    Article  CAS  PubMed  Google Scholar 

  • Stiles CD, Rowitch DH (2008) Glioma stem cells: a midterm exam. Neuron 58:832–846

    Article  CAS  PubMed  Google Scholar 

  • Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  • Sturm D, Bender S, Jones DT et al (2014) Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge. Nat Rev Cancer 14:92–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan JP, Nahed BV, Madden MW et al (2014) Brain tumor cells in circulation are enriched for mesenchymal gene expression. Cancer Discov 4:1299–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svensson KJ, Kucharzewska P, Christianson HC et al (2011) Hypoxia triggers a proangiogenic pathway involving cancer cell microvesicles and PAR-2-mediated heparin-binding EGF signaling in endothelial cells. Proc Natl Acad Sci USA 108:13147–13152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svensson KJ, Christianson HC, Wittrup A et al (2013) Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J Biol Chem 288:17713–17724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tani E, Nakano M, Itagaki T, Fukumori T (1978) Cell membrane structure of human giant-celled glioblastoma. Acta Neuropathol 19:61–65

    Article  Google Scholar 

  • Taraboletti G, D’Ascenzo S, Giusti I et al (2006) Bioavailability of VEGF in tumor-shed vesicles depends on vesicle burst induced by acidic pH. Neoplasia 8:96–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tauro BJ, Mathias RA, Greening DW et al (2013) Oncogenic H-Ras reprograms Madin-Darby canine kidney (MDCK) cell-derived exosomal proteins following epithelial-mesenchymal transition. Mol Cell Proteomics 12:2148–2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tehrani M, Friedman TM, Olson JJ, Brat DJ (2008) Intravascular thrombosis in central nervous system malignancies: a potential role in astrocytoma progression to glioblastoma. Brain Pathol 18:164–171

    Article  PubMed  PubMed Central  Google Scholar 

  • Thakur BK, Zhang H, Becker A et al (2014) Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res 24:766–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9:581–593

    Article  CAS  PubMed  Google Scholar 

  • Tominaga N, Kosaka N, Ono M et al (2015) Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat Commun 6:6716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trajkovic K, Hsu C, Chiantia S et al (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–1247

    Article  CAS  PubMed  Google Scholar 

  • Travis LB, Demark WW, Allan JM, Wood ME, Ng AK (2013) Aetiology, genetics and prevention of secondary neoplasms in adult cancer survivors. Nat Rev Clin Oncol 10:289–301

    Article  CAS  PubMed  Google Scholar 

  • Ung TH, Madsen HJ, Hellwinkel JE, Lencioni AM, Graner MW (2014) Exosome proteomics reveals transcriptional regulator proteins with potential to mediate downstream pathways. Cancer Sci 105:1384–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valadi H, Ekstrom K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  CAS  PubMed  Google Scholar 

  • van der Vos KE, Balaj L, Skog J, Breakefield XO (2011) Brain tumor microvesicles: insights into intercellular communication in the nervous system. Cell Mol Neurobiol 31:949–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Vos KE, Abels ER, Zhang X et al (2015) Directly visualized glioblastoma-derived extracellular vesicles transfer RNA to microglia/macrophages in the brain. Neuro Oncol 18(1):58–69

    PubMed  Google Scholar 

  • Veliz I, Loo Y, Castillo O et al (2015) Advances and challenges in the molecular biology and treatment of glioblastoma-is there any hope for the future? Ann Transl Med 3:7–5839

    PubMed  PubMed Central  Google Scholar 

  • Verhaak RG, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verweij FJ, van Eijndhoven MA, Hopmans ES et al (2011) LMP1 association with CD63 in endosomes and secretion via exosomes limits constitutive NF-kappaB activation. EMBO J 30:2115–2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JY, Bettegowda C (2015) Genetics and immunotherapy: using the genetic landscape of gliomas to inform management strategies. J Neurooncol 123:373–383

    Article  CAS  PubMed  Google Scholar 

  • Webber J, Yeung V, Clayton A (2015) Extracellular vesicles as modulators of the cancer microenvironment. Semin Cell Dev Biol 40:27–34

    Article  CAS  PubMed  Google Scholar 

  • Welton JL, Khanna S, Giles PJ et al (2010) Proteomics analysis of bladder cancer exosomes. Mol Cell Proteomics 9:1324–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507

    Article  CAS  PubMed  Google Scholar 

  • Wheeler DB, Zoncu R, Root DE, Sabatini DM, Sawyers CL (2015) Identification of an oncogenic RAB protein. Science 350(6257):211–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfers J, Lozier A, Raposo G et al (2001) Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 7:297–303

    Article  CAS  PubMed  Google Scholar 

  • Wrensch M, Minn Y, Chew T, Bondy M, Berger MS (2002) Epidemiology of primary brain tumors: current concepts and review of the literature. Neuro Oncol 4:278–299

    PubMed  PubMed Central  Google Scholar 

  • Wu X, Northcott PA, Dubuc A et al (2012) Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature 482:529–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wurdinger T, Tannous BA, Saydam O et al (2008) miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell 14:382–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wurdinger T, Deumelandt K, van der Vliet HJ, Wesseling P, de Gruijl TD (2014) Mechanisms of intimate and long-distance cross-talk between glioma and myeloid cells: how to break a vicious cycle. Biochim Biophys Acta 1846:560–575

    CAS  PubMed  Google Scholar 

  • Xie L, Kang H, Xu Q et al (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377

    Article  CAS  PubMed  Google Scholar 

  • Yan T, Mizutani A, Chen L et al (2014) Characterization of cancer stem-like cells derived from mouse induced pluripotent stem cells transformed by tumor-derived extracellular vesicles. J Cancer 5:572–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M, Li Y, Chilukuri K et al (2011) L1 stimulation of human glioma cell motility correlates with FAK activation. J Neurooncol 105:27–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon JH, Kim J, Kim KL et al (2014) Proteomic analysis of hypoxia-induced U373MG glioma secretome reveals novel hypoxia-dependent migration factors. Proteomics 14:1494–1502

    Article  CAS  PubMed  Google Scholar 

  • Yu JL, May L, Lhotak V et al (2005) Oncogenic events regulate tissue factor expression in colorectal cancer cells: implications for tumor progression and angiogenesis. Blood 105:1734–1741

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Harris SL, Levine AJ (2006) The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res 66:4795–4801

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zhang S, Yao J et al (2015) Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527(7576):100–104

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Parada LF (2002) The molecular and genetic basis of neurological tumours. Nat Rev Cancer 2:616–626

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, You Y, Li Q et al (2014) BCR-ABL1-positive microvesicles transform normal hematopoietic transplants through genomic instability: implications for donor cell leukemia. Leukemia 28:1666–1675

    Article  CAS  PubMed  Google Scholar 

  • Zoller M (2009) Tetraspanins: push and pull in suppressing and promoting metastasis. Nat Rev Cancer 9:40–55

    Article  PubMed  CAS  Google Scholar 

  • Zomer A, Maynard C, Verweij FJ et al (2015) In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell 161:1046–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the operating grants from the Canadian Institutes for Health Research (CIHR Foundation Grant; CIHR; MOP 102736, MOP 111119), Cancer Research Society (CRS), and Canadian Cancer Society Innovation to Impact (CCSRI) to J.R, who is also a recipient of the Jack Cole Chair in Pediatric Hematology/Oncology. SC was supported by the Thomlinson/PEEE Studentship, and studentship support for E.D. and infrastructure funds were provided by Fonds de Recherche en Santé du Quebec (FRSQ). E.D. was also supported by the Piccoli 401 Bike Challenge Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Rak.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Asti, E., Chennakrishnaiah, S., Lee, T.H. et al. Extracellular Vesicles in Brain Tumor Progression. Cell Mol Neurobiol 36, 383–407 (2016). https://doi.org/10.1007/s10571-015-0296-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-015-0296-1

Keywords

Navigation