Abstract
MicroRNAs are small non-coding RNAs which mediate post-transcriptional gene regulation. Recently, microRNAs have also been found to be localized to the extracellular space, often encapsulated in secreted extracellular vesicles (EVs). This tandem of EVs and tissue-specific expressed/secreted microRNAs that can be taken up by neighboring or distant recipient cells, leading to changes in gene expression—suggests a cell-specialized role in physiological and pathological conditions. The complexity of solid tumors and their distinct pathophysiology relies on interactive communications between the various cell types in the neoplasm (tumor, endothelial, or macrophages, for instance). Understanding how such EV/microRNA-mediated communication occurs may actually lead to avenues for therapeutic exploitation and/or intervention, particularly for the most formidable cancers, such as those in the brain. In this review, the role of microRNAs/EVs in brain tumors will be discussed with emphasis on how these molecules could be utilized for tumor therapy.
Similar content being viewed by others
References
Abuhusain HJ et al (2013) A metabolic shift favoring sphingosine 1-phosphate at the expense of ceramide controls glioblastoma angiogenesis. J Biol Chem 288:37355–37364. doi:10.1074/jbc.M113.494740
Akers JC et al (2013) MiR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): a platform for glioblastoma biomarker development. PLoS One 8:e78115. doi:10.1371/journal.pone.0078115
Akers JC et al (2015) miRNA contents of cerebrospinal fluid extracellular vesicles in glioblastoma patients. J Neurooncol 123:205–216. doi:10.1007/s11060-015-1784-3
Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, Rak J (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10:619–624. doi:10.1038/ncb1725
Al-Nedawi K, Meehan B, Kerbel RS, Allison AC, Rak J (2009) Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci USA 106:3794–3799. doi:10.1073/pnas.0804543106
Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345. doi:10.1038/nbt.1807
Ansari KI et al (2015) Glucose-based regulation of miR-451/AMPK signaling depends on the OCT1 transcription factor. Cell Rep 11:902–909. doi:10.1016/j.celrep.2015.04.016
Arroyo JD et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 108:5003–5008. doi:10.1073/pnas.1019055108
Asuthkar S, Velpula KK, Chetty C, Gorantla B, Rao JS (2012) Epigenetic regulation of miRNA-211 by MMP-9 governs glioma cell apoptosis, chemosensitivity and radiosensitivity. Oncotarget 3:1439–1454
Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO, Skog J (2011) Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nature Communications 2:180. doi:10.1038/ncomms1180
Bao S et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760. doi:10.1038/nature05236
Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. doi:10.1016/j.cell.2009.01.002
Bhat KP et al (2013) Mesenchymal differentiation mediated by NF-kappaB promotes radiation resistance in glioblastoma. Cancer Cell 24:331–346. doi:10.1016/j.ccr.2013.08.001
Bier A et al (2013) MicroRNA-137 is downregulated in glioblastoma and inhibits the stemness of glioma stem cells by targeting RTVP-1. Oncotarget 4:665–676
Bobrie A, Colombo M, Krumeich S, Raposo G, Thery C (2012) Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J Extracell Vesicles. doi:10.3402/jev.v1i0.18397
Bronisz A et al (2014) Extracellular vesicles modulate the glioblastoma microenvironment via a tumor suppression signaling network directed by miR-1. Cancer Res 74:738–750. doi:10.1158/0008-5472.CAN-13-2650
Camussi G, Deregibus MC, Bruno S, Grange C, Fonsato V, Tetta C (2011) Exosome/microvesicle-mediated epigenetic reprogramming of cells American. J Cancer Res 1:98–110
Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655. doi:10.1016/j.cell.2009.01.035
Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033. doi:10.1158/0008-5472.CAN-05-0137
Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H (2012) The brain tumor microenvironment. Glia 60:502–514
Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, Parada LF (2012a) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488:522–526. doi:10.1038/nature11287
Chen L et al (2012b) miR-137 is frequently down-regulated in glioblastoma and is a negative regulator of Cox-2. Eur J Cancer 48:3104–3111. doi:10.1016/j.ejca.2012.02.007
Chen L et al (2012c) Downregulation of miR-221/222 sensitizes glioma cells to temozolomide by regulating apoptosis independently of p53 status. Oncol Rep 27:854–860. doi:10.3892/or.2011.1535
Chen L et al (2012d) The putative tumor suppressor miR-524-5p directly targets Jagged-1 and Hes-1 in glioma. Carcinogenesis 33:2276–2282. doi:10.1093/carcin/bgs261
Chen D et al (2014) MicroRNA-451 induces epithelial-mesenchymal transition in docetaxel-resistant lung adenocarcinoma cells by targeting proto-oncogene c-Myc. Eur J Cancer 50:3050–3067. doi:10.1016/j.ejca.2014.09.008
Chen H, Li X, Li W, Zheng H (2015) miR-130a can predict response to temozolomide in patients with glioblastoma multiforme, independently of O6-methylguanine-DNA methyltransferase. J Transl Med 13:69. doi:10.1186/s12967-015-0435-y
Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436:740–744. doi:10.1038/nature03868
Cheng L, Bao S, Rich JN (2010) Potential therapeutic implications of cancer stem cells in glioblastoma. Biochem Pharmacol 80:654–665. doi:10.1016/j.bcp.2010.04.035
Ciafre SA et al (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334:1351–1358. doi:10.1016/j.bbrc.2005.07.030
Collino F et al (2010) Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PloS one 5:e11803. doi:10.1371/journal.pone.0011803
Comincini S et al (2013) microRNA-17 regulates the expression of ATG7 and modulates the autophagy process, improving the sensitivity to temozolomide and low-dose ionizing radiation treatments in human glioblastoma cells. Cancer Biol Ther 14:574–586. doi:10.4161/cbt.24597
Conti A et al (2009) miR-21 and 221 upregulation and miR-181b downregulation in human grade II-IV astrocytic tumors. J Neurooncol 93:325–332. doi:10.1007/s11060-009-9797-4
Corsten MF, Miranda R, Kasmieh R, Krichevsky AM, Weissleder R, Shah K (2007) MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res 67:8994–9000. doi:10.1158/0008-5472.CAN-07-1045
Dai S, Wei D, Wu Z, Zhou X, Wei X, Huang H, Li G (2008) Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol Ther 16:782–790. doi:10.1038/mt.2008.1
de Jong OG et al (2012) Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles. doi:10.3402/jev.v1i0.18396
Delic S et al (2014) MiR-328 promotes glioma cell invasion via SFRP1-dependent Wnt-signaling activation. Neuro-oncology 16:179–190. doi:10.1093/neuonc/not164
Djebali S et al (2012) Landscape of transcription in human cells. Nature 489:101–108. doi:10.1038/nature11233
Dong Q et al (2014) An axis involving SNAI1, microRNA-128 and SP1 modulates glioma progression. PLoS One 9:e98651. doi:10.1371/journal.pone.0098651
Du Z et al (2013) Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat Struct Mol Biol 20:908–913. doi:10.1038/nsmb.2591
Eichhorn SW et al (2014) mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol Cell 56:104–115. doi:10.1016/j.molcel.2014.08.028
Eiring AM et al (2010) miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell 140:652–665. doi:10.1016/j.cell.2010.01.007
Ernst A et al (2010) De-repression of CTGF via the miR-17-92 cluster upon differentiation of human glioblastoma spheroid cultures. Oncogene 29:3411–3422. doi:10.1038/onc.2010.83
Escudier B et al (2005) Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of the first phase I clinical trial. J Transl Med 3:10. doi:10.1186/1479-5876-3-10
Estrada-Bernal A, Lawler SE, Nowicki MO, Ray Chaudhury A, Van Brocklyn JR (2011) The role of sphingosine kinase-1 in EGFRvIII-regulated growth and survival of glioblastoma cells. J Neurooncol 102:353–366. doi:10.1007/s11060-010-0345-z
Fabbri M et al (2012) MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci USA 109:E2110–2116. doi:10.1073/pnas.1209414109
Fan X, Matsui W, Khaki L, Stearns D, Chun J, Li YM, Eberhart CG (2006) Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 66:7445–7452. doi:10.1158/0008-5472.CAN-06-0858
Fan X et al (2010) NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 28:5–16. doi:10.1002/stem.254
Fareh M et al (2012) The miR 302-367 cluster drastically affects self-renewal and infiltration properties of glioma-initiating cells through CXCR4 repression and consequent disruption of the SHH-GLI-NANOG network. Cell Death Differ 19:232–244. doi:10.1038/cdd.2011.89
Ferretti E et al (2008) Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J 27:2616–2627. doi:10.1038/emboj.2008.172
Fitzner D et al (2011) Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J Cell Sci 124:447–458. doi:10.1242/jcs.074088
Floyd D, Purow B (2014) Micro-masters of glioblastoma biology and therapy: increasingly recognized roles for microRNAs. Neuro-oncology 16:622–627. doi:10.1093/neuonc/nou049
Fowler A et al (2011) miR-124a is frequently down-regulated in glioblastoma and is involved in migration and invasion. Eur J Cancer 47:953–963. doi:10.1016/j.ejca.2010.11.026
Friedmann-Morvinski D (2014) Glioblastoma heterogeneity and cancer cell plasticity. Crit Rev Oncog 19:327–336
Furnari FB et al (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21:2683–2710. doi:10.1101/gad.1596707
Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS, Krichevsky AM (2008) MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 28:5369–5380. doi:10.1128/MCB.00479-08
Gabriely G et al (2011) Human glioma growth is controlled by microRNA-10b. Cancer Res 71:3563–3572. doi:10.1158/0008-5472.CAN-10-3568
Gal H et al (2008) MIR-451 and imatinib mesylate inhibit tumor growth of glioblastoma stem cells. Biochem Biophys Res Commun 376:86–90. doi:10.1016/j.bbrc.2008.08.107
Garcia NA, Ontoria-Oviedo I, Gonzalez-King H, Diez-Juan A, Sepulveda P (2015) Glucose starvation in cardiomyocytes enhances exosome secretion and promotes angiogenesis in endothelial cells. PloS one 10:e0138849. doi:10.1371/journal.pone.0138849
Garnier D, Jabado N, Rak J (2013) Extracellular vesicles as prospective carriers of oncogenic protein signatures in adult and paediatric brain tumours. Proteomics 13:1595–1607. doi:10.1002/pmic.201200360
Gaur AB, Holbeck SL, Colburn NH, Israel MA (2011) Downregulation of Pdcd4 by mir-21 facilitates glioblastoma proliferation in vivo. Neuro-oncology 13:580–590. doi:10.1093/neuonc/nor033
Giese A, Loo MA, Tran N, Haskett D, Coons SW, Berens ME (1996) Dichotomy of astrocytoma migration and proliferation. Int J Cancer 67:275–282. doi:10.1002/(SICI)1097-0215(19960717)67:2<275:AID-IJC20>3.0.CO;2-9
Giese A, Bjerkvig R, Berens ME, Westphal M (2003) Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol 21:1624–1636. doi:10.1200/JCO.2003.05.063
Gilbertson RJ, Rich JN (2007) Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 7:733–736. doi:10.1038/nrc2246
Godlewski J et al (2008) Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 68:9125–9130. doi:10.1158/0008-5472.CAN-08-2629
Godlewski J, Bronisz A, Nowicki MO, Chiocca EA, Lawler S (2010a) microRNA-451: a conditional switch controlling glioma cell proliferation and migration. Cell Cycle 9:2742–2748
Godlewski J et al (2010b) MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol Cell 37:620–632. doi:10.1016/j.molcel.2010.02.018
Godlewski J, Krichevsky AM, Johnson MD, Chiocca EA, Bronisz A (2015) Belonging to a network—microRNAs, extracellular vesicles, and the glioblastoma microenvironment. Neuro-oncology 17:652–662. doi:10.1093/neuonc/nou292
Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123:631–640. doi:10.1016/j.cell.2005.10.022
Guan H et al (2011) Sphingosine kinase 1 regulates the Akt/FOXO3a/Bim pathway and contributes to apoptosis resistance in glioma cells. PLoS One 6:e19946. doi:10.1371/journal.pone.0019946
Guduric-Fuchs J, O’Connor A, Camp B, O’Neill CL, Medina RJ, Simpson DA (2012) Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics 13:357. doi:10.1186/1471-2164-13-357
Guessous F et al (2010) microRNA-34a is tumor suppressive in brain tumors and glioma stem cells. Cell Cycle 9:1031–1036
Guessous F et al (2013) Oncogenic effects of miR-10b in glioblastoma stem cells. J Neurooncol 112:153–163. doi:10.1007/s11060-013-1047-0
Guil S, Esteller M (2015) RNA-RNA interactions in gene regulation: the coding and noncoding players. Trends Biochem Sci 40:248–256. doi:10.1016/j.tibs.2015.03.001
Han L et al (2012) LncRNA pro file of glioblastoma reveals the potential role of lncRNAs in contributing to glioblastoma pathogenesis. Int J Oncol 40:2004–2012. doi:10.3892/ijo.2012.1413
Holdhoff M, Yovino SG, Boadu O, Grossman SA (2013) Blood-based biomarkers for malignant gliomas. J Neurooncol 113:345–352. doi:10.1007/s11060-013-1144-0
Hong X, Sin WC, Harris AL, Naus CC (2015) Gap junctions modulate glioma invasion by direct transfer of microRNA. Oncotarget 6:15566–15577
Huang Z, Cheng L, Guryanova OA, Wu Q, Bao S (2010) Cancer stem cells in glioblastoma—molecular signaling and therapeutic targeting. Protein Cell 1:638–655. doi:10.1007/s13238-010-0078-y
Infanger DW et al (2013) Glioblastoma stem cells are regulated by interleukin-8 signaling in a tumoral perivascular niche. Cancer Res 73:7079–7089. doi:10.1158/0008-5472.CAN-13-1355
Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4:143–159. doi:10.1002/emmm.201100209
Ismail N et al (2013) Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood 121:984–995. doi:10.1182/blood-2011-08-374793
Kajimoto T, Okada T, Miya S, Zhang L, Nakamura S (2013) Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multivesicular endosomes. Nat Commun 4:2712. doi:10.1038/ncomms3712
Kapitonov D et al (2009) Targeting sphingosine kinase 1 inhibits Akt signaling, induces apoptosis, and suppresses growth of human glioblastoma cells and xenografts. Cancer Res 69:6915–6923. doi:10.1158/0008-5472.CAN-09-0664
Katakowski M, Buller B, Wang X, Rogers T, Chopp M (2010a) Functional microRNA is transferred between glioma cells. Cancer Res 70:8259–8263. doi:10.1158/0008-5472.CAN-10-0604
Katakowski M, Zheng X, Jiang F, Rogers T, Szalad A, Chopp M (2010b) MiR-146b-5p suppresses EGFR expression and reduces in vitro migration and invasion of glioma. Cancer Invest 28:1024–1030. doi:10.3109/07357907.2010.512596
Katakowski M et al (2013) Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett 335:201–204. doi:10.1016/j.canlet.2013.02.019
Kefas B et al (2008) microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 68:3566–3572. doi:10.1158/0008-5472.CAN-07-6639
Kefas B et al (2009) The neuronal microRNA miR-326 acts in a feedback loop with notch and has therapeutic potential against brain tumors. J Neurosci 29:15161–15168. doi:10.1523/JNEUROSCI.4966-09.2009
Kogure T, Lin WL, Yan IK, Braconi C, Patel T (2011) Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology 54:1237–1248. doi:10.1002/hep.24504
Koppers-Lalic D et al (2014) Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep 8:1649–1658. doi:10.1016/j.celrep.2014.08.027
Kosaka N, Iguchi H, Hagiwara K, Yoshioka Y, Takeshita F, Ochiya T (2013) Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem 288:10849–10859. doi:10.1074/jbc.M112.446831
Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–73. doi:10.1093/nar/gkt1181
Krichevsky AM, Gabriely G (2009) miR-21: a small multi-faceted RNA. J Cell Mol Med 13:39–53. doi:10.1111/j.1582-4934.2008.00556.x
Kwak HJ et al (2011) Downregulation of Spry2 by miR-21 triggers malignancy in human gliomas. Oncogene 30:2433–2442. doi:10.1038/onc.2010.620
Lai CP et al (2014) Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter ACS nano 8:483–494. doi:10.1021/nn404945r
Lakomy R et al (2011) MiR-195, miR-196b, miR-181c, miR-21 expression levels and O-6-methylguanine-DNA methyltransferase methylation status are associated with clinical outcome in glioblastoma patients. Cancer Sci 102:2186–2190. doi:10.1111/j.1349-7006.2011.02092.x
Lang MF et al (2012) Genome-wide profiling identified a set of miRNAs that are differentially expressed in glioblastoma stem cells and normal neural stem cells. PloS one 7:e36248. doi:10.1371/journal.pone.0036248
Lavon I et al (2010) Gliomas display a microRNA expression profile reminiscent of neural precursor cells. Neuro-oncology 12:422–433. doi:10.1093/neuonc/nop061
Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854
Lee I et al (2009) New class of microRNA targets containing simultaneous 5′-UTR and 3′-UTR interaction sites. Genome Res 19:1175–1183. doi:10.1101/gr.089367.108
Lee HK et al (2013) Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal. Oncotarget 4:346–361
Li Y et al (2009a) MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res 69:7569–7576. doi:10.1158/0008-5472.CAN-09-0529
Li Y et al (2009b) MicroRNA-21 targets LRRFIP1 and contributes to VM-26 resistance in glioblastoma multiforme. Brain Res 1286:13–18. doi:10.1016/j.brainres.2009.06.053
Li Z et al (2009c) Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15:501–513. doi:10.1016/j.ccr.2009.03.018
Li P et al (2010) MiR-181b suppresses proliferation of and reduces chemoresistance to temozolomide in U87 glioma stem cells. J Biomed Res 24:436–443. doi:10.1016/S1674-8301(10)60058-9
Li Y, Zhao S, Zhen Y, Li Q, Teng L, Asai A, Kawamoto K (2011) A miR-21 inhibitor enhances apoptosis and reduces G(2)-M accumulation induced by ionizing radiation in human glioblastoma U251 cells. Brain Tumor Pathol 28:209–214. doi:10.1007/s10014-011-0037-1
Li CC et al (2013) Glioma microvesicles carry selectively packaged coding and non-coding RNAs which alter gene expression in recipient cells. RNA Biol 10:1333–1344. doi:10.4161/rna.25281
Lim PK et al (2011) Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res 71:1550–1560. doi:10.1158/0008-5472.CAN-10-2372
Lin J, Teo S, Lam DH, Jeyaseelan K, Wang S (2012) MicroRNA-10b pleiotropically regulates invasion, angiogenicity and apoptosis of tumor cells resembling mesenchymal subtype of glioblastoma multiforme. Cell Death Dis 3:e398. doi:10.1038/cddis.2012.134
MacRae IJ, Ma E, Zhou M, Robinson CV, Doudna JA (2008) In vitro reconstitution of the human RISC-loading complex. Proc Natl Acad Sci USA 105:512–517. doi:10.1073/pnas.0710869105
Malzkorn B, Wolter M, Liesenberg F, Grzendowski M, Stuhler K, Meyer HE, Reifenberger G (2010) Identification and functional characterization of microRNAs involved in the malignant progression of gliomas. Brain Pathol 20:539–550. doi:10.1111/j.1750-3639.2009.00328.x
Maniataki E, Mourelatos Z (2005) A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev 19:2979–2990. doi:10.1101/gad.1384005
Manterola L et al (2014) A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool. Neuro-oncology 16:520–527. doi:10.1093/neuonc/not218
Mao P et al (2013) Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc Natl Acad Sci USA 110:8644–8649. doi:10.1073/pnas.1221478110
Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501:328–337. doi:10.1038/nature12624
Melo SA et al (2009) A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet 41:365–370. doi:10.1038/ng.317
Melo SA et al (2014) Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 26:707–721. doi:10.1016/j.ccell.2014.09.005
Meyer M et al (2015) Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity. Proc Natl Acad Sci USA 112:851–856. doi:10.1073/pnas.1320611111
Mignot G, Roux S, Thery C, Segura E, Zitvogel L (2006) Prospects for exosomes in immunotherapy of cancer. J Cell Mol Med 10:376–388
Miranda KC et al (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217. doi:10.1016/j.cell.2006.07.031
Mittelbrunn M et al (2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2:282. doi:10.1038/ncomms1285
Morse MA et al (2005) A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med 3:9. doi:10.1186/1479-5876-3-9
Munoz JL, Bliss SA, Greco SJ, Ramkissoon SH, Ligon KL, Rameshwar P (2013) Delivery of functional anti-miR-9 by mesenchymal stem cell-derived exosomes to glioblastoma multiforme cells conferred chemosensitivity molecular therapy. Nucleic Acids 2:e126. doi:10.1038/mtna.2013.60
Munro TP, Magee RJ, Kidd GJ, Carson JH, Barbarese E, Smith LM, Smith R (1999) Mutational analysis of a heterogeneous nuclear ribonucleoprotein A2 response element for RNA trafficking. J Biol Chem 274:34389–34395
Nan Y et al (2010) MiRNA-451 plays a role as tumor suppressor in human glioma cells. Brain Res 1359:14–21. doi:10.1016/j.brainres.2010.08.074
Noerholm M et al (2012) RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls. BMC Cancer 12:22. doi:10.1186/1471-2407-12-22
Nolte-’t Hoen EN, Buermans HP, Waasdorp M, Stoorvogel W, Wauben MH, Hoen PA (2012) Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res 40:9272–9285. doi:10.1093/nar/gks658
Ohgaki H, Kleihues P (2005) Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64:479–489
Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170:1445–1453. doi:10.2353/ajpath.2007.070011
Ohgaki H et al (2004) Genetic pathways to glioblastoma: a population-based study. Cancer Res 64:6892–6899. doi:10.1158/0008-5472.CAN-04-1337
Ohno S et al (2013) Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther 21:185–191. doi:10.1038/mt.2012.180
Orom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30:460–471. doi:10.1016/j.molcel.2008.05.001
Ostenfeld MS et al (2014) Cellular disposal of miR23b by RAB27-dependent exosome release is linked to acquisition of metastatic properties. Cancer Res 74:5758–5771. doi:10.1158/0008-5472.CAN-13-3512
Ostrowski M et al (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nature Cell Biol 12:19–30; sup pp 11–13 doi:10.1038/ncb2000
Papagiannakopoulos T, Shapiro A, Kosik KS (2008) MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res 68:8164–8172. doi:10.1158/0008-5472.CAN-08-1305
Patel AP et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344:1396–1401. doi:10.1126/science.1254257
Peruzzi P et al (2013) MicroRNA-128 coordinately targets polycomb repressor complexes in glioma stem cells. Neuro-oncology 15:1212–1224. doi:10.1093/neuonc/not055
Pietras A et al (2014) Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth. Cell Stem Cell 14:357–369. doi:10.1016/j.stem.2014.01.005
Pigati L et al (2010) Selective release of microRNA species from normal and malignant mammary epithelial cells. PloS One 5:e13515. doi:10.1371/journal.pone.0013515
Piwecka M et al (2015) Comprehensive analysis of microRNA expression profile in malignant glioma tissues. Mol Oncol. doi:10.1016/j.molonc.2015.03.007
Qiu S, Huang D, Yin D, Li F, Li X, Kung HF, Peng Y (2013) Suppression of tumorigenicity by microRNA-138 through inhibition of EZH2-CDK4/6-pRb-E2F1 signal loop in glioblastoma multiforme. Biochim Biophys Acta 1832:1697–1707. doi:10.1016/j.bbadis.2013.05.015
Rani SB, Rathod SS, Karthik S, Kaur N, Muzumdar D, Shiras AS (2013) MiR-145 functions as a tumor-suppressive RNA by targeting Sox9 and adducin 3 in human glioma cells. Neuro-oncology 15:1302–1316. doi:10.1093/neuonc/not090
Rao JS (2003) Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3:489–501. doi:10.1038/nrc1121
Rao P, Benito E, Fischer A (2013) MicroRNAs as biomarkers for CNS disease. Front Mol Neurosci 6:39. doi:10.3389/fnmol.2013.00039
Ren Y et al (2010a) Co-delivery of as-miR-21 and 5-FU by poly(amidoamine) dendrimer attenuates human glioma cell growth in vitro. J Biomater Sci Polym Ed 21:303–314. doi:10.1163/156856209X415828
Ren Y et al (2010b) MicroRNA-21 inhibitor sensitizes human glioblastoma cells U251 (PTEN-mutant) and LN229 (PTEN-wild type) to taxol. BMC Cancer 10:27. doi:10.1186/1471-2407-10-27
Richly H, Aloia L, Di Croce L (2011) Roles of the Polycomb group proteins in stem cells and cancer. Cell Death Dis 2:e204. doi:10.1038/cddis.2011.84
Rigogliuso S, Donati C, Cassara D, Taverna S, Salamone M, Bruni P, Vittorelli ML (2010) An active form of sphingosine kinase-1 is released in the extracellular medium as component of membrane vesicles shed by two human tumor cell lines. J Oncol 2010:509329. doi:10.1155/2010/509329
Roth P et al (2011) A specific miRNA signature in the peripheral blood of glioblastoma patients. J Neurochem 118:449–457. doi:10.1111/j.1471-4159.2011.07307.x
Sasayama T, Nishihara M, Kondoh T, Hosoda K, Kohmura E (2009) MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. Int J Cancer 125:1407–1413. doi:10.1002/ijc.24522
Sergeeva TI, Raushenbakh TI, Shevchenko MO, Rybal’chenko VG (1987) Excretion of 5-hydroxyindole-3-acetic and 5-methoxyindole-3-acetic acids in cancer patients. Vopr Onkol 33:20–25
Setty M et al (2012) Inferring transcriptional and microRNA-mediated regulatory programs in glioblastoma. Mol Syst Biol 8:605. doi:10.1038/msb.2012.37
Shi L, Chen J, Yang J, Pan T, Zhang S, Wang Z (2010a) MiR-21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 activity. Brain Res 1352:255–264. doi:10.1016/j.brainres.2010.07.009
Shi L et al (2010b) MiR-125b is critical for the suppression of human U251 glioma stem cell proliferation. Brain Res 1312:120–126. doi:10.1016/j.brainres.2009.11.056
Shi L et al (2012) MicroRNA-125b-2 confers human glioblastoma stem cells resistance to temozolomide through the mitochondrial pathway of apoptosis. Int J Oncol 40:119–129. doi:10.3892/ijo.2011.1179
Shi R et al (2015) Exosomal levels of miRNA-21 from cerebrospinal fluids associated with poor prognosis and tumor recurrence of glioma patients. Oncotarget 6:26971–26981
Shih AH, Holland EC (2006) Notch signaling enhances nestin expression in gliomas. Neoplasia 8:1072–1082. doi:10.1593/neo.06526
Silber J et al (2008) miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6:14. doi:10.1186/1741-7015-6-14
Singh SK et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401. doi:10.1038/nature03128
Singh R, Pochampally R, Watabe K, Lu Z, Mo YY (2014) Exosome-mediated transfer of miR-10b promotes cell invasion in breast cancer. Mol Cancer 13:256. doi:10.1186/1476-4598-13-256
Skog J et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476. doi:10.1038/ncb1800
Slaby O et al (2010) MicroRNA-181 family predicts response to concomitant chemoradiotherapy with temozolomide in glioblastoma patients. Neoplasma 57:264–269
Squadrito ML et al (2014) Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells. Cell Rep 8:1432–1446. doi:10.1016/j.celrep.2014.07.035
Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New Engl J Med 352:987–996. doi:10.1056/NEJMoa043330
Stupp R, Hegi ME, Gilbert MR, Chakravarti A (2007) Chemoradiotherapy in malignant glioma: standard of care and future directions. J Clin Oncol 25:4127–4136. doi:10.1200/JCO.2007.11.8554
Sun L et al (2011) MicroRNA-10b induces glioma cell invasion by modulating MMP-14 and uPAR expression via HOXD10. Brain Res 1389:9–18. doi:10.1016/j.brainres.2011.03.013
Sun J, Liao K, Wu X, Huang J, Zhang S, Lu X (2015) Serum microRNA-128 as a biomarker for diagnosis of glioma. Int J Clin Exp Med 8:456–463
Tabet F et al (2014) HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells. Nat Commun 5:3292. doi:10.1038/ncomms4292
Takahashi Y, Nishikawa M, Shinotsuka H, Matsui Y, Ohara S, Imai T, Takakura Y (2013) Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. J Biotechnol 165:77–84. doi:10.1016/j.jbiotec.2013.03.013
Tang H et al (2011) Interaction of hsa-miR-381 and glioma suppressor LRRC4 is involved in glioma growth. Brain Res 1390:21–32. doi:10.1016/j.brainres.2011.03.034
Tang H et al (2013) The miR-183/96/182 cluster regulates oxidative apoptosis and sensitizes cells to chemotherapy in gliomas. Curr Cancer Drug Targets 13:221–231
Tay Y, Rinn J, Pandolfi PP (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature 505:344–352. doi:10.1038/nature12986
Teplyuk NM et al (2012) MicroRNAs in cerebrospinal fluid identify glioblastoma and metastatic brain cancers and reflect disease activity. Neuro-oncology 14:689–700. doi:10.1093/neuonc/nos074
Teplyuk NM et al (2015) MicroRNA-10b inhibition reduces E2F1-mediated transcription and miR-15/16 activity in glioblastoma. Oncotarget 6:3770–3783
Ujifuku K et al (2010) miR-195, miR-455-3p and miR-10a(*) are implicated in acquired temozolomide resistance in glioblastoma multiforme cells. Cancer Lett 296:241–248. doi:10.1016/j.canlet.2010.04.013
Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659. doi:10.1038/ncb1596
van der Vos KE, Balaj L, Skog J, Breakefield XO (2011) Brain tumor microvesicles: insights into intercellular communication in the nervous system. Cell Mol Neurobiol 31:949–959. doi:10.1007/s10571-011-9697-y
van der Vos KE et al (2015) Directly visualized glioblastoma-derived extracellular vesicles transfer RNA to microglia/macrophages in the brain. Neuro-oncology. doi:10.1093/neuonc/nov244
Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934. doi:10.1126/science.1149460
Verhaak RG et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110. doi:10.1016/j.ccr.2009.12.020
Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13:423–433. doi:10.1038/ncb2210
Villarroya-Beltri C et al (2013) Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 4:2980. doi:10.1038/ncomms3980
Vo DT, Qiao M, Smith AD, Burns SC, Brenner AJ, Penalva LO (2011) The oncogenic RNA-binding protein Musashi1 is regulated by tumor suppressor miRNAs. RNA Biol 8:817–828. doi:10.4161/rna.8.5.16041
Wang J et al (2010) Notch promotes radioresistance of glioma stem cells. Stem cells 28:17–28. doi:10.1002/stem.261
Wang K et al (2013) miR-92b controls glioma proliferation and invasion through regulating Wnt/beta-catenin signaling via Nemo-like kinase. Neuro-oncology 15:578–588. doi:10.1093/neuonc/not004
Wang R et al (2014) Acquisition of radioresistance in docetaxel-resistant human lung adenocarcinoma cells is linked with dysregulation of miR-451/c-Myc-survivin/rad-51 signaling. Oncotarget 5:6113–6129
Wei X, Chen D, Lv T, Li G, Qu S (2014) Serum microRNA-125b as a potential biomarker for glioma diagnosis. Mol Neurobiol. doi:10.1007/s12035-014-8993-1
Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23:1494–1504. doi:10.1101/gad.1800909
Wong ST, Zhang XQ, Zhuang JT, Chan HL, Li CH, Leung GK (2012) MicroRNA-21 inhibition enhances in vitro chemosensitivity of temozolomide-resistant glioblastoma cells. Anticancer Res 32:2835–2841
Wu X, Hu A, Zhang M, Chen Z (2013) Effects of Rab27a on proliferation, invasion, and anti-apoptosis in human glioma cell. Tumour Biol 34:2195–2203. doi:10.1007/s13277-013-0756-5
Wuchty S et al (2011) Prediction of associations between microRNAs and gene expression in glioma biology. PloS One 6:e14681. doi:10.1371/journal.pone.0014681
Xia H et al (2012a) Loss of brain-enriched miR-124 microRNA enhances stem-like traits and invasiveness of glioma cells. J Biol Chem 287:9962–9971. doi:10.1074/jbc.M111.332627
Xia J et al (2012b) miR-124 inhibits cell proliferation in gastric cancer through down-regulation of SPHK1. J Pathol 227:470–480. doi:10.1002/path.4030
Xin H et al (2012) Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells 30:1556–1564. doi:10.1002/stem.1129
Yan K, Yang K, Rich JN (2013) The evolving landscape of glioblastoma stem cells. Curr Opin Neurol 26:701–707. doi:10.1097/WCO.0000000000000032
Yan Y et al (2015) LncRNA and mRNA interaction study based on transcriptome profiles reveals potential core genes in the pathogenesis of human glioblastoma multiforme. J Cancer Res Clin Oncol 141:827–838. doi:10.1007/s00432-014-1861-6
Yang YP et al (2012) Inhibition of cancer stem cell-like properties and reduced chemoradioresistance of glioblastoma using microRNA145 with cationic polyurethane-short branch PEI. Biomaterials 33:1462–1476. doi:10.1016/j.biomaterials.2011.10.071
Yang HW, Xing H, Johnson MD (2015) A major role for microRNAs in glioblastoma cancer stem-like cells. Arch Pharmacol Res 38:423–434. doi:10.1007/s12272-015-0574-y
Yu X, Harris SL, Levine AJ (2006) The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res 66:4795–4801. doi:10.1158/0008-5472.CAN-05-4579
Zhang Y et al (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39:133–144. doi:10.1016/j.molcel.2010.06.010
Zhang H, Li W, Sun S, Yu S, Zhang M, Zou F (2012a) Inhibition of sphingosine kinase 1 suppresses proliferation of glioma cells under hypoxia by attenuating activity of extracellular signal-regulated kinase. Cell Prolif 45:167–175. doi:10.1111/j.1365-2184.2012.00807.x
Zhang J, Stevens MF, Bradshaw TD (2012b) Temozolomide: mechanisms of action, repair and resistance. Curr Mol Pharmacol 5:102–114
Zhang XQ et al (2013) A long non-coding RNA signature in glioblastoma multiforme predicts survival. Neurobiol Dis 58:123–131. doi:10.1016/j.nbd.2013.05.011
Zhang R et al (2015) Plasma miR-221/222 family as novel descriptive and prognostic biomarkers for glioma. Mol Neurobiol. doi:10.1007/s12035-014-9079-9
Zhao S et al (2013) MicroRNA-153 is tumor suppressive in glioblastoma stem cells. Mol Biol Rep 40:2789–2798. doi:10.1007/s11033-012-2278-4
Zhong J, Paul A, Kellie SJ, O’Neill GM (2010) Mesenchymal migration as a therapeutic target in glioblastoma. J Oncol 2010:430142. doi:10.1155/2010/430142
Zhou H, Rigoutsos I (2014) MiR-103a-3p targets the 5′ UTR of GPRC5A in pancreatic cells. Rna 20:1431–1439. doi:10.1261/rna.045757.114
Zhou X et al (2010) Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab Invest 90:144–155. doi:10.1038/labinvest.2009.126
Zhuang X et al (2011) Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 19:1769–1779. doi:10.1038/mt.2011.164
Acknowledgments
This work was supported by the Projects of National Cancer Institute (US) (Grants 5P01CA069246-16 to E.A.C. and 1R01CA176203-01A1 to J.G.).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declared that there is no conflict of interest.
Rights and permissions
About this article
Cite this article
Bronisz, A., Godlewski, J. & Chiocca, E.A. Extracellular Vesicles and MicroRNAs: Their Role in Tumorigenicity and Therapy for Brain Tumors. Cell Mol Neurobiol 36, 361–376 (2016). https://doi.org/10.1007/s10571-015-0293-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10571-015-0293-4