Abstract
The backward error analysis is a great tool which allows selecting in an effective way the scaling parameter s and the polynomial degree of approximation m when the action of the matrix exponential \(\exp (A)v\) has to be approximated by \(\left( p_m(s^{-1}A)\right) ^sv=\exp (A+\varDelta A)v\). We propose here a rigorous bound for the relative backward error \(\left\Vert \varDelta A\right\Vert _{2}/\left\Vert A\right\Vert _{2}\), which is of particular interest for matrices whose field of values is skinny, such as the discretization of the advection–diffusion or the Schrödinger operators. The numerical results confirm the superiority of the new approach with respect to methods based on the classical power series expansion of the backward error for the matrices of our interest, both in terms of computational cost and achieved accuracy.
Similar content being viewed by others
References
Al-Mohy, A.H., Higham, N.J.: A new scaling and squaring algorithm for the matrix exponential. SIAM J. Matrix Anal. Appl. 31(3), 970–989 (2009)
Al-Mohy, A.H., Higham, N.J.: Computing the action of the matrix exponential with an application to exponential integrators. SIAM J. Sci. Comput. 33(2), 488–511 (2011)
Bos, L.P., Caliari, M.: Application of modified Leja sequences to polynomial interpolation. Dolomites Res. Notes Approx. 8, 66–74 (2015)
Caliari, M.: Accurate evaluation of divided differences for polynomial interpolation of exponential propagators. Computing 80(2), 189–201 (2007)
Caliari, M., Kandolf, P., Ostermann, A., Rainer, S.: The Leja method revisited: backward error analysis for the matrix exponential. SIAM J. Sci. Comput. 38(3), A1639–A1661 (2016)
Caliari, M., Kandolf, P., Zivcovich, F.: Backward error analysis of polynomial approximations for computing the action of the matrix exponential. BIT Numer. Math. 58(4), 907–935 (2018)
Crouzeix, M., Palencia, C.: The numerical range is a \((1+\sqrt{2})\)-spectral set. SIAM J. Matrix Anal. Appl. 38(2), 649–655 (2017)
Frommer, A., Güttel, S., Schweitzer, M.: Efficient and stable Arnoldi restarts for matrix functions based on quadrature. SIAM J. Matrix Anal. Appl. 35(2), 661–683 (2014)
Gaudrealt, S., Rainwater, G., Tokman, M.: KIOPS: A fast adaptive Krylov subspace solver for exponential integrators. J. Comput. Phys. 372(1), 236–255 (2018)
Güttel, S.: Rational Krylov approximation of matrix functions: numerical methods and optimal pole selection. GAMM-Mitt. 36(1), 8–31 (2013)
Higham, N.J.: Estimating the matrix \(p\)-norm. Numer. Math. 62, 539–555 (1992)
Higham, N.J.: The scaling and squaring method for the matrix exponential revisited. SIAM J. Matrix Anal. Appl. 26(4), 1179–1193 (2005)
Higham, N.J.: Functions of Matrices. SIAM, Philadelphia (2008)
Higham, N.J., Tisseur, F.: A block algorithm for matrix 1-norm estimation, with an application to 1-norm pseudospectra. SIAM J. Matrix Anal. Appl. 21(4), 1185–1201 (2000)
Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)
Johnson, C.R.: Numerical determination of the field of values of a general complex matrix. SIAM J. Numer. Anal. 15(3), 595–602 (1978)
McCurdy, A., Ng, K.C., Parlett, B.N.: Accurate computation of divided differences of the exponential function. Math. Comput. 43(168), 501–528 (1984)
Moler, C.B., Van Loan, C.F.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003)
Moret, I., Novati, P.: RD-rational approximation of the matrix exponential operator. BIT Numer. Math. 44, 595–615 (2004)
Niesen, J., Wright, W.M.: Algorithm 919: A Krylov subspace algorithm for evaluating the \(\phi \)-functions appearing in exponential integrators. ACM Trans. Math. Softw. 38(3), 1–19 (2012)
Schmelzer, T., Trefethen, L.N.: Evaluating matrix functions for exponential integrators via Carathéodory–Fejér approximation and contour integrals. Electron. Trans. Numer. Anal. 29, 1–18 (2007)
Tal-Ezer, H.: High degree polynomial interpolation in Newton form. SIAM J. Sci. Stat. Comput. 12(3), 648–667 (1991)
van den Eshof, J., Hochbruck, M.: Preconditioning Lanczos approximations to the matrix exponential. SIAM J. Sci. Comput. 27(4), 1438–1457 (2006)
Zivcovich, F.: Fast and accurate computation of divided differences for analytic functions, with an application to the exponential function. Dolomites Res. Notes Approx. 12, 28–42 (2019)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Christian Lubich.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Caliari, M., Cassini, F. & Zivcovich, F. Approximation of the matrix exponential for matrices with a skinny field of values. Bit Numer Math 60, 1113–1131 (2020). https://doi.org/10.1007/s10543-020-00809-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10543-020-00809-0