Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Estimating the matrixp-norm

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

The Hölderp-norm of anm×n matrix has no explicit representation unlessp=1,2 or ∞. It is shown here that thep-norm can be estimated reliably inO(mn) operations. A generalization of the power method is used, with a starting vector determined by a technique with a condition estimation flavour. The algorithm nearly always computes ap-norm estimate correct to the specified accuracy, and the estimate is always within a factorn 1−1/p of ‖A‖ p . As a by-product, a new way is obtained to estimate the 2-norm of a rectangular matrix; this method is more general and produces better estimates in practice than a similar technique of Cline, Conn and Van Loan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, E., Bai, Z., Bischof, C.H., Demmel, J.W., Dongarra, J., Du Croz, J.J., Greenbaum, A., Hammarling, S.J., McKenney, A., Ostrouchov, S., Sorensen, D.C. (1992): LAPACK Users' Guide, Society for Industrial and Applied Mathematics, Philadelphia (to appear)

  2. Bartels, S.G. (1991): Two topics in matrix analysis: Structured sensitivity for Vandermondelike systems and a subgradient method for matrix norm estimation. M.Sc. Thesis, University of Dundee, Scotland

    Google Scholar 

  3. Boyd, D.W. (1974): The power method forl p norms. Linear Algebra and Appl.9, 95–101

    Google Scholar 

  4. Cline, A.K. (1972): Rate of convergence of Lawson's algorithm. Math. Comput.26, 167–176

    Google Scholar 

  5. Cline, A.K., Conn, A.R., Van Loan, C.F. (1982): Generalizing the LINPACK condition estimator. In: J.P. Hennart, ed., Numerical Analysis, Mexico 1981. Lecture Notes in Mathematics 909. Springer, Berlin Heidelberg New York, pp. 73–83

    Google Scholar 

  6. Fletcher, R. (1987): Practical Methods of Optimization, 2nd Ed. Wiley, Chichester

    Google Scholar 

  7. Fletcher, R., Grant, J.A., Hebden, M.D. (1971): The calculation of linear bestL p approximations, Comput. J.14, 276–279

    Google Scholar 

  8. Gastinel, N. (1970): Linear Numerical Analysis. Academic Press, London

    Google Scholar 

  9. Gilbert, J.R., Moler, C.B., Schreiber, R.S. (1992): Sparse matrices in MATLAB: Design and implementation. SIAM J. Matrix Anal. Appl.13, 333–356

    Google Scholar 

  10. Gillespie, T.A. (1991): Noncommutative variations on theorems of Marcel Riesz and others, In: J.H. Ewing, F.W. Gehring, eds., Paul Halmos: Celebrating 50 Years of Mathematics. Springer, Berlin Heidelberg New York

    Google Scholar 

  11. Goldberg, M., Straus, E.G. (1983): Multiplicativity ofl p norms for matrices. Linear Algebra Appl.52/53, 351–360

    Google Scholar 

  12. Golub G.H., Van Loan, C.F. (1989): Matrix Computations, 2nd Ed. Johns Hopkins University Press, Baltimore, Maryland

    Google Scholar 

  13. Hager, W.W. (1984): Condition estimates. SIAM J. Sci. Stat. Comput.5, 311–316

    Article  Google Scholar 

  14. Hardy, G.H., Littlewood, J.E., Pólya, G. (1952): Inequalities, 2nd Ed. Cambridge University Press, Cambridge

    Google Scholar 

  15. Higham, N.J. (1987): A survey of condition number estimation for triangular matrices. SIAM Rev.29, 575–596

    Google Scholar 

  16. Higham, N.J. (1988): FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation (Algorithm 674). ACM Trans. Math. Soft.14, 381–396

    Google Scholar 

  17. Higham, N.J. (1990): Experience with a matrix norm estimator. SIAM J Sci. Stat. Comput.11, 804–809

    Google Scholar 

  18. Higham, N.J. (1993): Optimization by direct search in matrix computations, Numerical Analysis Report No. 197, University of Manchester, England, January 1991; SIAM J. Matrix Anal. Appl. (to appear)

    Google Scholar 

  19. Higham, N.J. (1991): Algorithm 694: A collection of test matrices in Matlab, ACM Trans. Math. Soft.17, 289–305

    Google Scholar 

  20. Horn R.A., Johnson, C.R. (1985): Matrix Analysis. Cambridge University Press, Cambridge

    Google Scholar 

  21. Kato, T. (1976): Perturbation Theory for Linear Operators, 2nd Ed. Springer, Berlin Heidelberg New York

    Google Scholar 

  22. Li, Y. (1991): A globally convergent method forL p problems. Technical Report 91-1212. Department of Computer Science, Cornell University, Ithaca, NY

    Google Scholar 

  23. Merle, G., Späth, H. (1974): Computational experiences with discreteL p -approximation. Computing12, 315–321

    Google Scholar 

  24. Moler, C.B., Little, J.N., Bangert, S. (1989); 386-Matlab User's Guide. The Math Works, Inc., 24 Prime Parkway, Natick, MA

    Google Scholar 

  25. Osborne, M.R. (1985): Finite Algorithms in Optimization and Data Analysis. Wiley, Chichester

    Google Scholar 

  26. Osborne, M.R., Watson, G.A. (1985): An analysis of the total approximation problem in separable norms, and an algorithm for the totall 1 problem. SIAM J. Sci. Stat. Comput.6, 410–424

    Google Scholar 

  27. Späth, H., Watson, G.A. (1987): On orthogonal linearl 1 approximation. Numer. Math.51, 531–543

    Google Scholar 

  28. Schneider, H., Strang, W.G. (1962): Comparison theorems for supremum norms. Numer. Math.4, 15–20

    Google Scholar 

  29. Pham Dinh Tao, (1984): Convergence of a subgradient method for computing the bound norm of matrices [in French]. Linear Algebra Appl.62, 163–182

    Google Scholar 

  30. Todd, J. (1977): Basic Numerical Mathematics, Vol. 2. Numerical Algebra. Birkhäuser, Basel; Academic Press, New York

    Google Scholar 

  31. Van Loan, C.F. (1987): On estimating the condition of eigenvalues and eigenvectors. Linear Algebra Appl.88/89, 715–732

    Google Scholar 

  32. Watson, G.A. (1980): Approximation Theory and Numerical Methods. Wiley, Chichester

    Google Scholar 

  33. Watson, G.A. (1983): The total approximation problem. In C.K. Chui, L.L. Schumaker, J.D. Ward, eds., Approximation Theory IV. Academic Press, New York, pp. 723–728

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higham, N.J. Estimating the matrixp-norm. Numer. Math. 62, 539–555 (1992). https://doi.org/10.1007/BF01396242

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01396242

Mathematical Subject Classification (1991)

Navigation