Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Shape preserving \(HC^2\) interpolatory subdivision

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

A subdivision procedure is developed to solve a \(C^2\) Hermite interpolation problem with the further request of preserving the shape of the initial data. We consider a specific non-stationary and non-uniform variant of the Merrien \(HC^2\) subdivision family, and we provide a data dependent strategy to select the related parameters which ensures convergence and shape preservation for any set of initial monotone and/or convex data. Each step of the proposed subdivision procedure can be regarded as the midpoint evaluation of an interpolating function—and of its first and second derivatives—in a suitable space of \(C^2\) functions of dimension \(6\) which has tension properties. The limit function of the subdivision procedure is a \(C^2\) piecewise quintic polynomial interpolant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The monotone decreasing case can be addressed in a similar way.

  2. The concave case can be addressed in a similar way.

  3. The Maple worksheets with all the computations can be found at http://www.mat.uniroma2.it/~manni/Maple_HC2.html.

References

  1. Akima, H.: A new method of interpolation and smooth curve fitting based on local procedures. J. ACM 17, 589–602 (1970)

    Article  MATH  Google Scholar 

  2. Cavaretta, A.S., Dahmen, W., Micchelli, C.A.: Stationary subdivision. Mem. Am. Math. Soc. 93(453), (1991)

  3. Costantini, P.: Curve and surface construction using variable degree polynomial splines. Comput. Aided Geom. Des. 17, 419–446 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Costantini, P., Lyche, T., Manni, C.: On a class of weak Tchebycheff systems. Numer. Math. 101, 333–354 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Costantini, P., Kaklis, P., Manni, C.: Polynomial cubic splines with tension properties. Comput. Aided Geom. Des. 27, 592–610 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Costantini, P., Manni, C.: On constrained nonlinear Hermite subdivision. Constr. Approx. 28, 291–331 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cravero, I., Manni, C.: Shape-preserving interpolants with high smoothness. J. Comput. Appl. Math. 157, 383–405 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Daubechies, I., Guskov, I., Sweldens, W.: Regularity of irregular subdivision. Constr. Approx. 15, 381–426 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Delbourgo, R., Gregory, J.A.: Shape preserving piecewise rational interpolation. SIAM J. Sci. Stat. Comput. 6, 967–976 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dubuc, S.: Scalar and Hermite subdivision schemes. Appl. Comput. Harm. Anal. 21, 376–394 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dyn, N., Levin, D.: Subdivision schemes in geometric modelling. Acta Numer. 11, 73–144 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Goodman, T.: Shape preserving interpolation by curves. In: Levesley, J., Anderson, I.J., Mason, J.C. (eds.) Algorithms for Approximation IV, pp. 24–35. University of Huddersfield Proceedings, Huddersfield (2002)

  13. Goodman, T., Mazure, M.L.: Blossoming beyond extended Chebyshev spaces. J. Approx. Theory 109, 48–81 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Goodman, T.N.T.: Total positivity and the shape of curves. In: Total positivity and its applications (Jaca, 1994), Math. Appl., vol. 359, pp. 157–186. Kluwer Acad. Publ., Dordrecht (1996)

  15. Guglielmi, N., Manni, C., Vitale, D.: Convergence analysis of \(C^2\) Hermite interpolatory subdivision schemes by explicit joint spectral radius formulas. Linear Algebra Appl. 434, 884–902 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Koch, P.E., Lyche, T.: Interpolation with exponential B-splines in tension. In: Geometric Modelling, Comput. Suppl., vol. 8, pp. 173–190. Springer, Vienna (1993)

  17. Kvasov, B.I.: Algorithms for shape preserving local approximation with automatic selection of tension parameters. Comput. Aided Geom. Des. 17, 17–37 (2000)

    Article  MathSciNet  Google Scholar 

  18. Lettieri, D., Manni, C., Speleers, H.: Piecewise rational quintic shape-preserving interpolation with high smoothness. Jaen J. Approx. 6, 233–260 (2014)

  19. Lyche, T., Merrien, J.L.: Hermite subdivision with shape constraints on a rectangular mesh. BIT Numer. Math. 46, 831–859 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lyche, T., Merrien, J.L.: \(C^1\) interpolatory subdivision with shape constraints for curves. SIAM J. Numer. Anal. 44, 1095–1121 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Manni, C.: On shape preserving \(C^2\) Hermite interpolation. BIT 41, 127–148 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Manni, C., Mazure, M.L.: Shape constraints and optimal bases for \(C^1\) Hermite interpolatory subdivision schemes. SIAM J. Numer. Anal. 48, 1254–1280 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mazure, M.L.: Chebyshev–Bernstein bases. Comput. Aided Geom. Des. 16, 649–669 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Merrien, J.L.: A family of Hermite interpolants by bisection algorithms. Numer. Algor. 2, 187–200 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  25. Merrien, J.L.: Interpolants d’Hermite \(C^2\) obtenus par subdivision. M2AN. Math. Model. Numer. Anal. 33, 55–65 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. Merrien, J.L., Sablonnière, P.: Monotone and convex \(C^1\) Hermite interpolants generated by a subdivision scheme. Constr. Approx. 19, 279–298 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Merrien, J.L., Sablonnière, P.: Rational splines for Hermite interpolation with shape constraints. Comput. Aided Geom. Des. 30, 296–309 (2013)

    Article  MATH  Google Scholar 

  28. Pelosi, F., Sablonnière, P.: Shape-preserving \(C^1\) Hermite interpolants generated by a Gori–Pitolli subdivision scheme. J. Comput. Appl. Math. 220, 686–711 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Peña, J.: Shape Preserving Representations in Computer Aided Geometric Design. Nova Science, Massachusetts (1999)

  30. Sablonnière, P.: Bernstein-type bases and corner cutting algorithms for \(C^1\) Merrien’s curves. Adv. Comput. Math. 20, 229–246 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  31. Schweikert, D.G.: An interpolation curve using a spline in tension. J. Math. Phys. 45, 312–317 (1966)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Manni.

Additional information

Communicated by Tom Lyche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lettieri, D., Manni, C., Pelosi, F. et al. Shape preserving \(HC^2\) interpolatory subdivision. Bit Numer Math 55, 751–779 (2015). https://doi.org/10.1007/s10543-014-0530-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-014-0530-0

Keywords

Mathematics Subject Classification

Navigation