Abstract
A subdivision procedure is developed to solve a \(C^2\) Hermite interpolation problem with the further request of preserving the shape of the initial data. We consider a specific non-stationary and non-uniform variant of the Merrien \(HC^2\) subdivision family, and we provide a data dependent strategy to select the related parameters which ensures convergence and shape preservation for any set of initial monotone and/or convex data. Each step of the proposed subdivision procedure can be regarded as the midpoint evaluation of an interpolating function—and of its first and second derivatives—in a suitable space of \(C^2\) functions of dimension \(6\) which has tension properties. The limit function of the subdivision procedure is a \(C^2\) piecewise quintic polynomial interpolant.
Similar content being viewed by others
Notes
The monotone decreasing case can be addressed in a similar way.
The concave case can be addressed in a similar way.
The Maple worksheets with all the computations can be found at http://www.mat.uniroma2.it/~manni/Maple_HC2.html.
References
Akima, H.: A new method of interpolation and smooth curve fitting based on local procedures. J. ACM 17, 589–602 (1970)
Cavaretta, A.S., Dahmen, W., Micchelli, C.A.: Stationary subdivision. Mem. Am. Math. Soc. 93(453), (1991)
Costantini, P.: Curve and surface construction using variable degree polynomial splines. Comput. Aided Geom. Des. 17, 419–446 (2000)
Costantini, P., Lyche, T., Manni, C.: On a class of weak Tchebycheff systems. Numer. Math. 101, 333–354 (2005)
Costantini, P., Kaklis, P., Manni, C.: Polynomial cubic splines with tension properties. Comput. Aided Geom. Des. 27, 592–610 (2010)
Costantini, P., Manni, C.: On constrained nonlinear Hermite subdivision. Constr. Approx. 28, 291–331 (2008)
Cravero, I., Manni, C.: Shape-preserving interpolants with high smoothness. J. Comput. Appl. Math. 157, 383–405 (2003)
Daubechies, I., Guskov, I., Sweldens, W.: Regularity of irregular subdivision. Constr. Approx. 15, 381–426 (1999)
Delbourgo, R., Gregory, J.A.: Shape preserving piecewise rational interpolation. SIAM J. Sci. Stat. Comput. 6, 967–976 (1985)
Dubuc, S.: Scalar and Hermite subdivision schemes. Appl. Comput. Harm. Anal. 21, 376–394 (2006)
Dyn, N., Levin, D.: Subdivision schemes in geometric modelling. Acta Numer. 11, 73–144 (2002)
Goodman, T.: Shape preserving interpolation by curves. In: Levesley, J., Anderson, I.J., Mason, J.C. (eds.) Algorithms for Approximation IV, pp. 24–35. University of Huddersfield Proceedings, Huddersfield (2002)
Goodman, T., Mazure, M.L.: Blossoming beyond extended Chebyshev spaces. J. Approx. Theory 109, 48–81 (2001)
Goodman, T.N.T.: Total positivity and the shape of curves. In: Total positivity and its applications (Jaca, 1994), Math. Appl., vol. 359, pp. 157–186. Kluwer Acad. Publ., Dordrecht (1996)
Guglielmi, N., Manni, C., Vitale, D.: Convergence analysis of \(C^2\) Hermite interpolatory subdivision schemes by explicit joint spectral radius formulas. Linear Algebra Appl. 434, 884–902 (2011)
Koch, P.E., Lyche, T.: Interpolation with exponential B-splines in tension. In: Geometric Modelling, Comput. Suppl., vol. 8, pp. 173–190. Springer, Vienna (1993)
Kvasov, B.I.: Algorithms for shape preserving local approximation with automatic selection of tension parameters. Comput. Aided Geom. Des. 17, 17–37 (2000)
Lettieri, D., Manni, C., Speleers, H.: Piecewise rational quintic shape-preserving interpolation with high smoothness. Jaen J. Approx. 6, 233–260 (2014)
Lyche, T., Merrien, J.L.: Hermite subdivision with shape constraints on a rectangular mesh. BIT Numer. Math. 46, 831–859 (2006)
Lyche, T., Merrien, J.L.: \(C^1\) interpolatory subdivision with shape constraints for curves. SIAM J. Numer. Anal. 44, 1095–1121 (2006)
Manni, C.: On shape preserving \(C^2\) Hermite interpolation. BIT 41, 127–148 (2001)
Manni, C., Mazure, M.L.: Shape constraints and optimal bases for \(C^1\) Hermite interpolatory subdivision schemes. SIAM J. Numer. Anal. 48, 1254–1280 (2010)
Mazure, M.L.: Chebyshev–Bernstein bases. Comput. Aided Geom. Des. 16, 649–669 (1999)
Merrien, J.L.: A family of Hermite interpolants by bisection algorithms. Numer. Algor. 2, 187–200 (1992)
Merrien, J.L.: Interpolants d’Hermite \(C^2\) obtenus par subdivision. M2AN. Math. Model. Numer. Anal. 33, 55–65 (1999)
Merrien, J.L., Sablonnière, P.: Monotone and convex \(C^1\) Hermite interpolants generated by a subdivision scheme. Constr. Approx. 19, 279–298 (2003)
Merrien, J.L., Sablonnière, P.: Rational splines for Hermite interpolation with shape constraints. Comput. Aided Geom. Des. 30, 296–309 (2013)
Pelosi, F., Sablonnière, P.: Shape-preserving \(C^1\) Hermite interpolants generated by a Gori–Pitolli subdivision scheme. J. Comput. Appl. Math. 220, 686–711 (2008)
Peña, J.: Shape Preserving Representations in Computer Aided Geometric Design. Nova Science, Massachusetts (1999)
Sablonnière, P.: Bernstein-type bases and corner cutting algorithms for \(C^1\) Merrien’s curves. Adv. Comput. Math. 20, 229–246 (2004)
Schweikert, D.G.: An interpolation curve using a spline in tension. J. Math. Phys. 45, 312–317 (1966)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Tom Lyche.
Rights and permissions
About this article
Cite this article
Lettieri, D., Manni, C., Pelosi, F. et al. Shape preserving \(HC^2\) interpolatory subdivision. Bit Numer Math 55, 751–779 (2015). https://doi.org/10.1007/s10543-014-0530-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10543-014-0530-0