Abstract
Subdivision rules for meshes with boundary are essential for practical applications of subdivision surfaces. These rules have to result in piecewise \(C^{\ell }\)-continuous boundary limit curves and ensure \(C^{\ell }\)-continuity of the surface itself. Extending the theory of Zorin (Constr Approx 16(3):359–397, 2000), we present in this paper general necessary and sufficient conditions for \(C^{\ell }\)-continuity of subdivision schemes for surfaces with boundary, and specialize these to practically applicable sufficient conditions for \(C^1\)-continuity. We use these conditions to show that certain boundary rules for Loop and Catmull–Clark are in fact \(C^1\) continuous.
Similar content being viewed by others
References
Biermann, H., Levin, A., Zorin, D.: Piecewise smooth subdivision surfaces with normal control. In: SIGGRAPH 2000 Conference Proceedings, Annual Conference Series. ACM SIGGRAPH, Addison Wesley, July 2000
Catmull, E., Clark, J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Comput. Aided Des. 10(6), 350–355 (1978)
DeRose, T., Kass, M., Truong, T.: Subdivision surfaces in character animation. Proceedings of SIGGRAPH 98, Orlando, Florida, p. 85–94, July 1998. ISBN 0-89791-999-8
Doo, D.: A subdivision algorithm for smoothing down irregularly shaped polyhedrons. In: Proceedings on Interactive Techniques in Computer Aided Design, p. 157–165. Bologna (1978)
Dubrovin, B.A., Fomenko, A.T., Novikov, S.P.: Modern geometry–methods and applications. Part I. Springer-, New York, second edition, 1992. The geometry of surfaces, transformation groups, and fields, Translated from the Russian by Robert G. Burns
Grundel, S.: Eigenvalue optimization in \(C^2\) subdivision and boundary subdivision. PhD thesis, New York University, Courant Institute of Mathematical Sciences, New York, NY, 10011 (2011)
Hoppe, H., DeRose, T., Duchamp, T., Halstead, M., Jin, H., McDonald, J., Schweitzer, J., Stuetzle, W.: Piecewise smooth surface reconsruction. In: Computer Graphics Proceedings, Annual Conference Series, p. 295–302. ACM Siggraph (1994)
Lee, J.M.: Smooth Manifolds. Springer, Berlin (2003)
Loop, C.: Smooth subdivision surfaces based on triangles. Master’s thesis, University of Utah, Department of Mathematics (1987)
Munkres, J.: Elementary Differential Topology. Princeton University Press, Princeton (1966)
Nasri, A.H.: Polyhedral subdivision methods for free-form surfaces. ACM Trans. Graph. 6(1), 29–73 (1987)
Nasri, A.H.: Boundary-corner control in recursive-subdivision surfaces. Comput. Aided Des. 23(6), 405–410 (1991)
Nasri, A.H.: Surface interpolation on irregular networks with normal conditions. Comput. Aided Geom. Des. 8, 89–96 (1991)
Peters, J., Fan, J.: On the complexity of smooth spline surfaces from quad meshes. Comput. Aided Geom. Des. 27(1), 96–105 (2010)
Peters, J., Reif, U.: Analysis of generalized B-spline subdivision algorithms. SIAM J. Numer. Anal. 35(2), 728–748 (1998)
Peters, J., Reif, U.: Subdivision surfaces, volume 3 of Geometry and Computing. Springer, Berlin, 2008. With introductory contributions by Nira Dyn and Malcolm Sabin
Reif, U.: A unified approach to subdivision algorithms near extraordinary vertices. Comput. Aided Geom. Des. 12, 153–174 (1995)
Schweitzer, J.E.: Analysis and application of subdivision surfaces. PhD thesis, University of Washington, Seattle (1996)
Wallner, J., Dyn, N.: Convergence and \(C^1\) analysis of subdivision schemes on manifolds by proximity. Comput. Aided Geom. Des. 22(7), 593–622 (2005)
Wallner, J., Nava Yazdani, E., Weinmann, A.: Convergence and smoothness analysis of subdivision rules in Riemannian and symmetric spaces. Adv. Comput. Math. 34(2), 201–218 (2011)
Xie, G., Yu, T.P.-Y.: Smoothness analysis of nonlinear subdivision schemes of homogeneous and affine invariant type. Constr. Approx. 22(2), 219–254 (2005)
Zorin, D.: Subdivision and multiresolution surface representations. PhD thesis, Caltech, Pasadena (1997)
Zorin, D.: A method for analysis of \(c^1\)-continuity of subdivision surfaces. SIAM J. Numer. Anal. 37(4), 1677–1708 (2000)
Zorin, D.: Smoothness of stationary subdivision on irregular meshes. Constr. Approx. 16(3), 359–397 (2000)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Wolfgang Dahmen.
Rights and permissions
About this article
Cite this article
Biermann, H., Grundel, S. & Zorin, D. Smoothness of Subdivision Surfaces with Boundary. Constr Approx 42, 1–29 (2015). https://doi.org/10.1007/s00365-015-9292-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00365-015-9292-4