Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Constructive Classifications of Modal Logics and Extensions of Minimal Logic

  • Published:
Algebra and Logic Aims and scope

Classifications of logics over Johansson’s minimal logic J and modal logics are considered. The paper contains a partial review of the results obtained after 2010. It is known that there is a duality between the lattice of normal logics and the lattice of varieties of modal algebras, as well as between the lattice of varieties of J-algebras and the lattice of J-logics. For a logic L, by V (L) we denote its corresponding variety of algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. L. Maksimova and V. F. Yun, “Recognizable logics,” Algebra and Logic, 54, No. 2, 167-182 (2015).

    Article  MathSciNet  Google Scholar 

  2. L. L. Maksimova and V. F. Yun, “Strong decidability and strong recognizability,” Algebra and Logic, 56, No. 3, 370-385 (2017).

    Article  MathSciNet  Google Scholar 

  3. L. L. Maksimova, “Craig’s theorem in superintuitionistic logics and amalgamable varieties of pseudo-Boolean algebras,” Algebra and Logic, 16, No. 6, 427-455 (1977).

    Article  Google Scholar 

  4. L. Maksimova, “Strongly decidable properties of modal and intuitionistic calculi,” Log. J. IGPL, 8, No. 6, 797-819 (2000).

    Article  MathSciNet  Google Scholar 

  5. L. L. Maksimova, “Interpolation theorems in modal logics and amalgamable varieties of topological Boolean algebras,” Algebra and Logic, 18, No. 5, 348-370 (1979).

    Article  MathSciNet  Google Scholar 

  6. L. L. Maksimova, “Pretable superintuitionistic logics,” Algebra and Logic, 11, No. 5, 308-314 (1972).

    Article  Google Scholar 

  7. L. L. Maksimova, “Pretable extensions of the Lewis logic S4,” Algebra and Logic, 14, No. 1, 16-33 (1975).

    Article  Google Scholar 

  8. L. L. Maksimova and V. F. Yun, “The tabularity problem over the minimal logic,” Sib. Math. J., 57, No. 6, 1034-1043 (2016).

    Article  MathSciNet  Google Scholar 

  9. L. L. Maksimova, “The structure of slices over minimal logic,” Sib. Math. J., 57, No. 5, 841-848 (2016).

    Article  MathSciNet  Google Scholar 

  10. L. L. Maksimova and V. F. Yun, “Layers over minimal logic,” Algebra and Logic, 55, No. 4, 295-305 (2016).

    Article  MathSciNet  Google Scholar 

  11. L. L. Maksimova and V. F. Yun, “Slices and levels of extensions of the minimal logic,” Sib. Math. J., 58, No. 6, 1042-1051 (2017).

    Article  MathSciNet  Google Scholar 

  12. L. L. Maksimova and V. F. Yun, “Strong computability of slices over the logic GL,” Sib. El. Mat. Izv., 15, 37-47 (2018); http://semr.math.nsc.ru/v15/p35-47.pdf.

    MathSciNet  MATH  Google Scholar 

  13. L. L. Maksimova, “Decidability of the weak interpolation property over the minimal logic,” Algebra and Logic, 50, No. 2, 106-132 (2011).

    Article  MathSciNet  Google Scholar 

  14. L. L. Maksimova, “Restricted interpolation over modal logic S4,” Algebra and Logic, 52, No. 4, 308-335 (2013).

    Article  MathSciNet  Google Scholar 

  15. L. L. Maksimova and V. F. Yun, “Interpolation over the minimal logic and Odintsov intervals,” Sib. Math. J., 56, No. 3, 476-489 (2015).

    Article  MathSciNet  Google Scholar 

  16. L. L. Maksimova and V. F. Yun, “WIP-minimal logics and interpolation,” Sib. El. Mat. Izv., 12, 7-20 (2015); http://semr.math.nsc.ru/v12/p7-20.pdf.

    MathSciNet  MATH  Google Scholar 

  17. L. L. Maksimova and V. F. Yun, “Calculi over minimal logic and nonembeddability of algebras,” Sib. El. Mat. Izv., 13, 704-715 (2016); http://semr.math.nsc.ru/v13/ p704-715.pdf.

  18. L. L. Maksimova, “Recognizable and perceptible logics and varieties,” Algebra and Logic, 56, No. 3, 245-250 (2017).

    Article  MathSciNet  Google Scholar 

  19. L. L. Maksimova and V. F. Yun, “Extensions of the minimal logic and the interpolation problem,” Sib. Math. J., 59, No. 4, 681-693 (2018).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Maksimova.

Additional information

Translated from Algebra i Logika, Vol. 58, No. 6, pp. 808-814, November-December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimova, L.L. Constructive Classifications of Modal Logics and Extensions of Minimal Logic. Algebra Logic 58, 540–545 (2020). https://doi.org/10.1007/s10469-020-09572-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10469-020-09572-1

Navigation