Abstract
We investigate the expressivity of many-valued modal logics based on an algebraic structure with a complete linearly ordered lattice reduct. Necessary and sufficient algebraic conditions for admitting a suitable Hennessy–Milner property are established for classes of image-finite and (appropriately defined) modally saturated models. Full characterizations are obtained for many-valued modal logics based on complete BL-chains that are finite or have the real unit interval [0, 1] as a lattice reduct, including Łukasiewicz, Gödel, and product modal logics.
Similar content being viewed by others
References
Aglianò, P., Montagna, F.: Varieties of BL-algebras I: general properties. J. Pure Appl. Algebra 181, 105–129 (2003)
Bílková, M., Dostal, M.: Expressivity of many-valued modal logics, coalgebraically. In: Proceedings of WoLLIC 2016, volume 9803 of LNCS, pp. 109–124. Springer (2016)
Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)
Borgwardt, S., Distel, F., Peñaloza, R.: The limits of decidability in fuzzy description logics with general concept inclusions. Artif. Intell. 218, 23–55 (2015)
Bou, F., Esteva, F., Godo, L., Rodríguez, R.: On the minimum many-valued logic over a finite residuated lattice. J. Logic Comput. 21(5), 739–790 (2011)
Caicedo, X., Metcalfe, G., Rodríguez, R., Rogger, J.: Decidability in order-based modal logics. J. Comput. Syst. Sci. 88, 53–73 (2017)
Caicedo, X., Rodríguez, R.: Standard Gödel modal logics. Stud. Log. 94(2), 189–214 (2010)
Caicedo, X., Rodríguez, R.: Bi-modal Gödel logic over [0,1]-valued Kripke frames. J. Logic Comput. 25(1), 37–55 (2015)
Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Trends in Logic, vol. 7. Kluwer, Dordrecht (1999)
Diaconescu, D., Georgescu, G.: Tense operators on MV-algebras and Łukasiewicz–Moisil algebras. Fundam. Inform. 81(4), 379–408 (2007)
Diaconescu, D., Metcalfe, G., Schnüriger, L.: A real-valued modal logic. In: Proceedings of AiML 2016, pp. 236–251. College Publications (2016)
Eleftheriou, P.E., Koutras, C.D., Nomikos, C.: Notions of bisimulation for Heyting-valued modal languages. J. Logic Comput. 22(2), 213–235 (2012)
Fitting, M.C.: Many-valued modal logics. Fundam. Inform. 15(3–4), 235–254 (1991)
Fitting, M.C.: Many-valued modal logics II. Fundam. Inform. 17, 55–73 (1992)
Godo, L., Hájek, P., Esteva, F.: A fuzzy modal logic for belief functions. Fundam. Inform. 57(2–4), 127–146 (2003)
Godo, L., Rodríguez,R.: A fuzzy modal logic for similarity reasoning. In: Fuzzy Logic and Soft Computing, pp 33–48. Kluwer (1999)
Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)
Hájek, P.: Making fuzzy description logic more general. Fuzzy Sets Syst. 154(1), 1–15 (2005)
Hájek, P., Harmancová, D., Verbrugge, R.: A qualitative fuzzy possibilistic logic. Int. J. Approx. Reason. 12, 1–19 (1995)
Hansoul, G., Teheux, B.: Extending Łukasiewicz logics with a modality: Algebraic approach to relational semantics. Stud. Log. 101(3), 505–545 (2013)
Marti, M., Metcalfe, G.: Hennessy–Milner properties for many-valued modal logics. In: Proceedings of AiML 2014, pp. 407–420. College Publications (2014)
McNaughton, R.: A theorem about infinite-valued sentential logic. J. Symb. Logic 16(1), 1–13 (1951)
Metcalfe, G., Olivetti, N.: Towards a proof theory of Gödel modal logics. Log. Methods Comput. Sci. 7(2), 1–27 (2011)
Metcalfe, G., Olivetti, N., Gabbay, D.: Proof Theory for Fuzzy Logics. Springer, Berlin (2008)
Metcalfe, G., Paoli, F., Tsinakis, C.: Ordered algebras and logic. In: Hosni, H., Montagna, F. (eds.) Uncertainty and Rationality, vol. 10, pp. 1–85. Publications of the Scuola Normale Superiore di Pisa, Pisa (2010)
Priest, G.: Many-valued modal logics: a simple approach. Rev. Symb. Log. 1, 190–203 (2008)
Schockaert, S., De Cock, M., Kerre, E.: Spatial reasoning in a fuzzy region connection calculus. Artif. Intell. 173(2), 258–298 (2009)
Straccia, U.: Reasoning within fuzzy description logics. J. Artif. Intell. Res. 14, 137–166 (2001)
Vidal, A., Godo, L., Esteva, F.: On modal extensions of product fuzzy logic. J. Log. Comput. 27(1), 299–336 (2017)
Author information
Authors and Affiliations
Corresponding author
Additional information
Preliminary results from this work were reported in the proceedings of AiML 2014 [21].
Supported by Swiss National Science Foundation Grant 200021_165850.
Rights and permissions
About this article
Cite this article
Marti, M., Metcalfe, G. Expressivity in chain-based modal logics. Arch. Math. Logic 57, 361–380 (2018). https://doi.org/10.1007/s00153-017-0573-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00153-017-0573-4