Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Simple pyrolysis of graphene-wrapped PtNi nanoparticles supported on hierarchically N-doped porous carbon for sensitive detection of carbendazim

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel electrochemical sensor was established based on graphene-wrapped PtNi nanoparticles supported on three-dimensional (3D) N-doped porous carbon (G-PtNi/3D-NPC) for the highly sensitive and selective detection of carbendazim (CBZ). In this sensing system, the encapsulation of PtNi nanoparticles (NPs) by graphene can effectively prevent the aggregation tendency and enhance the structural stability. The hierarchically porous nanostructures have a large specific surface area to expose a large number of active sites and the resulting enhanced electrical conductivity ultimate improves the electrocatalytic activity towards CBZ. Under the optimal conditions, the prepared sensor showed excellent electrochemical responses for the determination of CBZ with a linear range of 0.5–30 μM and lower limit of detection (LOD) of 0.04 μM (S/N = 3). It also shows excellent anti-interference ability at a working potential of 0.74 V. The feasibility of the senor is demonstrated for its practical assays in diluted peach and vegetable samples with acceptable recovery (95.8–97.3 %, peach; 97.2–97.6 %, vegetable) and a relative standard deviation (RSD) below 2.3%.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yamuna A, Chen TW, Chen SM (2022) Synthesis and characterizations of iron antimony oxide nanoparticles and its applications in electrochemical detection of carbendazim in apple juice and paddy water samples. Food Chem 373:131569. https://doi.org/131510.131016/j.foodchem.132021.131569

    CAS  PubMed  Google Scholar 

  2. Brycht M, Vajdle O, Sipa K, Robak J, Rudnicki K, Piechocka J, Tasić A, Skrzypek S, Guzsvány V (2018) β-Cyclodextrin and multiwalled carbon nanotubes modified boron-doped diamond electrode for voltammetric assay of carbendazim and its corrosion inhibition behavior on stainless steel. Ionics (Kiel) 24:923–934. https://doi.org/910.1007/s11581-11017-12253-11580

    CAS  Google Scholar 

  3. Schneider EP, Dickert KJ (1994) Health costs and benefits of fungicide use in agricultur. J Agromed 1:19–37. https://doi.org/10.1300/J1096v1301n1301_1303

    Article  Google Scholar 

  4. Yang Y, Huo D, Wu H, Wang X, Yang J, Bian M, Ma Y, Hou C (2018) N, P-doped carbon quantum dots as a fluorescent sensing platform for carbendazim detection based on fluorescence resonance energy transfer. Sensors Actuators B Chem 274:296–303. https://doi.org/210.1016/j.snb.2018.1007.1130

    CAS  Google Scholar 

  5. Kokulnathan T, Ashok Kumar E, Wang TJ (2020) Synthesis of two-dimensional nanosheet like samarium molybdate with abundant active sites: real-time carbendazimin analysis in environmental samples. Microchem J 158:105227. https://doi.org/105210.101016/j.microc.102020.105227

    CAS  Google Scholar 

  6. Liao XN, Huang ZW, Huang K, Qiu M, Chen FL, Zhang YF, Wen YP, Chen JY (2019) Highly sensitive detection of carbendazim and its electrochemical oxidation mechanism at a nanohybrid sensor. J Electrochem Soc 166:B322–B327. https://doi.org/310.1149/1142.0251906jes

    CAS  Google Scholar 

  7. Patel GM, Rohit JV, Singhal RK, Kailasa SK (2015) Recognition of carbendazim fungicide in environmental samples by using 4-aminobenzenethiol functionalized silver nanoparticles as a colorimetric sensor. Sensors Actuators B Chem 206:684–691. https://doi.org/610.1016/j.snb.2014.1009.1095

    CAS  Google Scholar 

  8. del Pozo M, Hernández L, Quintana C (2010) A selective spectrofluorimetric method for carbendazim determination in oranges involving inclusion-complex formation with cucurbit[7]uril. Talanta 81:1542–1546. https://doi.org/1510.1016/j.talanta.2010.1502.1066

    PubMed  Google Scholar 

  9. Hao L, Gu H, Duan N, Wu S, Wang Z (2016) A chemiluminescent aptasensor for simultaneous detection of three antibiotics in milk. Anal Methods 8:7929–7936. https://doi.org/7910.1039/C7926AY02304E

    CAS  Google Scholar 

  10. Strickland AD, Batt CA (2009) Detection of carbendazim by surface-enhanced Raman scattering using cyclodextrin inclusion complexes on gold nanorods. Anal Chem 81:2895–2903. https://doi.org/2810.1021/ac801626x

    CAS  PubMed  Google Scholar 

  11. Pham TSH, Hasegawa S, Mahon P, Guérin K, Dubois M, Yu A (2022) Graphene nanocomposites based electrochemical sensing platform for simultaneous detection of multi-drugs. Electroanalysis 34:435–444. https://doi.org/410.1002/elan.202100485

    CAS  Google Scholar 

  12. Suresh I, Selvaraj S, Nesakumar N, Rayappan JBB, Kulandaiswamy AJ (2021) Nanomaterials based non-enzymatic electrochemical and optical sensors for the detection of carbendazim: a review. Trends Environ Anal Chem 31:e00137. https://doi.org/00110.01016/j.teac.02021.e00137

    CAS  Google Scholar 

  13. Ilager D, Seo H, Kalanur SS, Shetti NP, Aminabhavi TM (2021) A novel sensor based on WO3·0.33H2O nanorods modified electrode for the detection and degradation of herbicide, carbendazim. J Environ Manag 279:111611. https://doi.org/10.1016/j.jenvman.2020.111611

  14. Xu X, Jiang S, Hu Z, Liu S (2010) Nitrogen-doped carbon nanotubes: high electrocatalytic activity toward the oxidation of hydrogen peroxide and its application for biosensing. ACS Nano 4:4292–4298. https://doi.org/4210.1021/nn1010057

    CAS  PubMed  Google Scholar 

  15. Guan HJ, Zhao YF, Zhang J, Liu Y, Yuan SG, Zhang B (2018) Uniformly dispersed PtNi alloy nanoparticles in porous N-doped carbon nanofibers with high selectivity and stability for hydrogen peroxide detection. Sensors Actuators B Chem 261:354–363. https://doi.org/310.1016/j.snb.2018.1001.1169

    CAS  Google Scholar 

  16. Wang P, Zong LL, Guan ZJ, Li QY, Yang JJ (2018) PtNi alloy cocatalyst modification of eosin Y-sensitized g-C3N4/GO hybrid for efficient visible-light photocatalytic hydrogen evolution. Nanoscale Res Lett 13(13):33. https://doi.org/10.1186/s11671-11018-12448-y

    Article  PubMed  PubMed Central  Google Scholar 

  17. Baldizzone C, Mezzavilla S, Carvalho HWP, Meier JC, Schuppert AK, Heggen M, Galeano C, Grunwaldt JD, Schüth F, Mayrhofer KJJ (2014) Confined-space alloying of nanoparticles for the synthesis of efficient PtNi fuel-cell catalysts. Angew Chem Int Ed 53:14250–14254. https://doi.org/14210.11002/anie.201406812

    CAS  Google Scholar 

  18. Salgado JRC, Antolini E, Gonzalez ER (2004) Structure and activity of carbon-supported Pt−Co electrocatalysts for oxygen reduction. J Phys Chem B 108:17767–17774. https://doi.org/17710.11021/jp0486649

    CAS  Google Scholar 

  19. Wakisaka M, Suzuki H, Mitsui S, Uchida H, Watanabe M (2008) Increased oxygen coverage at Pt−Fe alloy cathode for the enhanced oxygen reduction reaction studied by EC−XPS. J Chem PhysC 112:2750–2755. https://doi.org/2710.1021/jp0766499

    CAS  Google Scholar 

  20. Chen XL, Zhang H, Huang XY, Feng JJ, Han DM, Zhang L, Chen JR, Wang AJ (2018) Facile solvothermal fabrication of Pt47Ni53 nanopolyhedrons for greatly boosting electrocatalytic performances for oxygen reduction and hydrogen evolution. J Colloid Interface Sci 525:260–268. https://doi.org/210.1016/j.jcis.2018.1004.1051

    CAS  PubMed  Google Scholar 

  21. Li S, Chen W, Pan H, Cao Y, Jiang Z, Tian X, Hao X, Maiyalagan T, Jiang ZJ (2019) FeCo alloy nanoparticles coated by an ultrathin N-doped carbon layer and encapsulated in carbon nanotubes as a highly efficient bifunctional air electrode for rechargeable Zn-Air batteries. ACS Sustain Chem Eng 7:8530–8541. https://doi.org/8510.1021/acssuschemeng.8539b00307

    CAS  Google Scholar 

  22. Bao JH, Wang JQ, Zhou YM, Hu YJ, Zhang ZW, Li TF, Xue Y, Guo C, Zhang YW (2019) Anchoring ultrafine PtNi nanoparticles on N-doped graphene for highly efficient hydrogen evolution reaction. Catal Sci Technol 9:4961–4969. https://doi.org/4910.1039/c4969cy01182j

    CAS  Google Scholar 

  23. Tran QC, An H, Ha H, Nguyen VT, Quang ND, Kim HY, Choi HS (2018) Robust graphene-wrapped PtNi nanosponge for enhanced oxygen reduction reaction performance. J Mater Chem A 6:8259–8264. https://doi.org/8210.1039/C8258TA01847B

    CAS  Google Scholar 

  24. Xiu R, Zhang F, Wang Z, Yang M, Xia J, Gui R, Xia Y (2015) Electrodeposition of PtNi bimetallic nanoparticles on three-dimensional graphene for highly efficient methanol oxidation. RSC Adv 5:86578–86583. https://doi.org/86510.81039/c86575ra13728d

    CAS  Google Scholar 

  25. Li SJ, He JZ, Zhang MJ, Zhang RX, Lv XL, Li SH, Pang H (2013) Electrochemical detection of dopamine using water-soluble sulfonated graphene. Electrochim Acta 102:58–65. https://doi.org/10.1016/j.electacta.2013.1003.1176

    Article  CAS  Google Scholar 

  26. Jing S, Zhang L, Luo L, Lu J, Yin S, Shen PK, Tsiakaras P (2018) N-doped porous molybdenum carbide nanobelts as efficient catalysts for hydrogen evolution reaction. Appl Catal B 224:533–540. https://doi.org/510.1016/j.apcatb.2017.1010.1025

    CAS  Google Scholar 

  27. Wei J, Liang Y, Hu Y, Kong B, Simon GP, Zhang J, Jiang SP, Wang H (2016) A versatile iron-tannin-framework ink coating strategy to fabricate biomass-derived iron carbide/Fe-N-carbon catalysts for efficient oxygen reduction. Angew Chem Int Ed 55:1355–1359. https://doi.org/1310.1002/anie.201509024

    CAS  Google Scholar 

  28. Ding X, Li M, Jin JL, Huang XB, Wu X, Feng LG (2022) Graphene aerogel supported Pt-Ni alloy as efficient electrocatalysts for alcohol fuel oxidation. Chin Chem Lett 33:2687–2691. https://doi.org/2610.1016/j.cclet.2021.2609.2076

    CAS  Google Scholar 

  29. Zhang Y, Gao F, Song P, Wang J, Guo J, Shiraishi Y, Du Y (2019) Glycine-assisted fabrication of N-doped graphene-supported uniform multipetal PtAg nanoflowers for enhanced ethanol and ethylene glycol oxidation. ACS Sustain Chem Eng 7:3176–3184. https://doi.org/3110.1021/acssuschemeng.3178b05020

    CAS  Google Scholar 

  30. Li J, Zhang Y, Zhang X, Huang J, Han J, Zhang Z, Han X, Xu P, Song B (2017) S, N dual-doped graphene-like carbon nanosheets as efficient oxygen reduction reaction electrocatalysts. ACS Appl Mater Interfaces 9:398–405. https://doi.org/310.1021/acsami.1026b12547

    CAS  PubMed  Google Scholar 

  31. Liu Q, Liu X, Xie Y, Sun F, Liang Z, Wang L, Fu H (2020) N-doped carbon coating enhances the bifunctional oxygen reaction activity of cofe nanoparticles for a highly stable Zn–Air battery. J Mater Chem A 8:21189–21198. https://doi.org/21110.21039/D21180TA08114K

    CAS  Google Scholar 

  32. Niu HJ, Zhang L, Feng JJ, Zhang QL, Huang H, Wang AJ (2019) Graphene-encapsulated cobalt nanoparticles embedded in porous nitrogen-doped graphitic carbon nanosheets as efficient electrocatalysts for oxygen reduction. J Colloid Interface Sci 552:744–751. https://doi.org/710.1016/j.jcis.2019.1005.1099

    CAS  PubMed  Google Scholar 

  33. Sun M, Davenport D, Liu H, Qu J, Elimelech M, Li J (2018) Highly efficient and sustainable non-precious-metal Fe–N–C electrocatalysts for the oxygen reduction. J Mater Chem A 6:2527–2539. https://doi.org/2510.1039/c2527ta09187g

    CAS  Google Scholar 

  34. Wu H, Zhong HC, Pan YZ, Li HB, Zeng JH (2022) Controlled hydrolysis of a nickel-ammonia complex on Pt nanoparticles for the preparation of highly active and stable PtNi/C catalysts. Ind Eng Chem Res 61:7504–7512. https://doi.org/7510.1021/acs.iecr.7501c02975

    CAS  Google Scholar 

  35. Duan X, Pan N, Sun C, Zhang K, Zhu X, Zhang M, Song L, Zheng H (2021) MOF-derived Co-MOF,O-doped carbon as trifunctional electrocatalysts to enable highly efficient Zn–Air batteries and water-splitting. J Energy Chem 56:290–298. https://doi.org/210.1016/j.jechem.2020.1008.1007

    CAS  Google Scholar 

  36. Rajabi HR, Farsi M (2016) Study of capping agent effect on the structural, optical and photocatalytic properties of zinc sulfide quantum dots. Mater Sci Semicond Process 48:14–22. https://doi.org/10.1016/j.mssp.2016.1002.1021

    Article  CAS  Google Scholar 

  37. Huang XY, Wang AJ, Zhang L, Fang KM, Wu LJ, Feng JJ (2018) Melamine-assisted solvothermal synthesis of PtNi nanodentrites as highly efficient and durable electrocatalyst for hydrogen evolution reaction. J Colloid Interface Sci 531:578–584. https://doi.org/510.1016/j.jcis.2018.1007.1051

    CAS  PubMed  Google Scholar 

  38. Wang Z, Ang J, Liu J, Ma XYD, Kong J, Zhang Y, Yan T, Lu X (2020) FeNi alloys encapsulated in n-doped CNTs-tangled porous carbon fibers as highly efficient and durable bifunctional oxygen electrocatalyst for rechargeable Zinc-Air battery. Appl Catal B 263:118344. https://doi.org/118310.111016/j.apcatb.112019.118344

    CAS  Google Scholar 

  39. Chen MT, Huang ZX, Ye X, Zhang L, Feng JJ, Wang AJ (2023) Caffeine derived graphene-wrapped Fe3C nanoparticles entrapped in hierarchically porous FeNC nanosheets for boosting oxygen reduction reaction. J Colloid Interface Sci 637:216–224. https://doi.org/210.1016/j.jcis.2023.1001.1077

    CAS  PubMed  Google Scholar 

  40. Feng YG, Zhu JH, Wang AJ, Mei LP, Luo XL, Feng JJ (2021) AuPt nanocrystals/polydopamine supported on open-pored hollow carbon nanospheres for a dual-signaling electrochemical ratiometric immunosensor towards h-fabp detection. Sensors Actuators B Chem 346:130501. https://doi.org/130510.131016/j.snb.132021.130501

    CAS  Google Scholar 

  41. Gao G, Jiang ZC, Hu CW (2021) Selective hydrogenation of the carbonyls in furfural and 5-hydroxymethylfurfural catalyzed by PtNi alloy supported on SBA-15 in aqueous solution under mild conditions. Front Chem 9:759512. https://doi.org/759510.753389/fchem.752021.759512

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen HY, Niu HJ, Han Z, Feng JJ, Huang H, Wang AJ (2020) Simple fabrication of trimetallic platinum-nickel-cobalt hollow alloyed 3D multipods for highly boosted hydrogen evolution reaction. J Colloid Interface Sci 570:205–211. https://doi.org/210.1016/j.jcis.2020.1002.1090

    CAS  PubMed  Google Scholar 

  43. Liu L, Zhang X, Yan F, Geng B, Zhu C, Chen Y (2020) Self-supported n-doped CNT arrays for flexible Zn–Air batteries. J Mater Chem A 8:18162–18172. https://doi.org/18110.11039/d18160ta05510g

    CAS  Google Scholar 

  44. Zhang W, Chen YP, Zhang L, Feng JJ, Li XS, Wang AJ (2022) Theophylline-regulated pyrolysis synthesis of nitrogen-doped carbon nanotubes with iron-cobalt nanoparticles for greatly boosting oxygen reduction reaction. J Colloid Interface Sci 626:653–661. https://doi.org/610.1016/j.jcis.2022.1006.1130

    CAS  PubMed  Google Scholar 

  45. Chen W, Chen X, Qiao R, Jiang Z, Zj J, Papović S, Raleva K, Zhou D (2022) Understanding the role of nitrogen and sulfur doping in promoting kinetics of oxygen reduction reaction and sodium ion battery performance of hollow spherical graphene. Carbon 187:230–240. https://doi.org/210.1016/j.carbon.2021.1011.1020

    CAS  Google Scholar 

  46. Veerakumar P, Sangili A, Chen SM, Vinothkumar V, Balu S, Hung ST, Lin KC (2021) Zinc and sulfur codoped iron oxide nanocubes anchored on carbon nanotubes for the detection of antitubercular drug isoniazid. ACS Appl Nano Materials 4:4562–4575. https://doi.org/4510.1021/acsanm.4561c00172

    CAS  Google Scholar 

  47. Sriram B, Baby JN, Hsu YF, Wang SF, George M (2021) Synergy of the LaVO4/h-BN nanocomposite: a highly active electrocatalyst for the rapid analysis of carbendazim. Inorg Chem 60:5271–5281. https://doi.org/5210.1021/acs.inorgchem.5271c00253

    CAS  PubMed  Google Scholar 

  48. Tu X, Gao F, Ma X, Zou J, Yu Y, Li M, Qu F, Huang X, Lu L (2020) Mxene/carbon nanohorn/beta-cyclodextrin-metal-organic frameworks as high-performance electrochemical sensing platform for sensitive detection of carbendazim pesticide. J Hazard Mater 396:122776. https://doi.org/122710.121016/j.jhazmat.122020.122776

    CAS  PubMed  Google Scholar 

  49. Han Z, Feng JJ, Yao YQ, Wang ZG, Zhang L, Wang AJ (2021) Mn, N, P-tridoped bamboo-like carbon nanotubes decorated with ultrafine Co2P/FeCo nanoparticles as bifunctional oxygen electrocatalyst for long-term rechargeable Zn-Air battery. J Colloid Interface Sci 590:330–340. https://doi.org/310.1016/j.jcis.2021.1001.1053

    CAS  PubMed  Google Scholar 

  50. Chen YP, Lin SY, Sun RM, Wang AJ, Zhang L, Ma X, Feng JJ (2022) FeCo/FeCoP encapsulated in N, Mn-codoped three-dimensional fluffy porous carbon nanostructures as highly efficient bifunctional electrocatalyst with multi-components synergistic catalysis for ultra-stable rechargeable Zn-Air batteries. J Colloid Interface Sci 605:451–462. https://doi.org/410.1016/j.jcis.2021.1007.1082

    CAS  PubMed  Google Scholar 

  51. Joseph XB, Baby JN, Wang SF, Sriram B, George M (2021) Interfacial superassembly of Mo2C@NiMn-LDH frameworks for electrochemical monitoring of carbendazim fungicide. ACS Sustain Chem Eng 9:14900–14910. https://doi.org/14910.11021/acssuschemeng.14901c05056

    CAS  Google Scholar 

  52. Periyasamy S, Kumar JV, Chen SM, Annamalai Y, Karthik R, Rajagounder NE (2019) Structural insights on 2D gadolinium tungstate nanoflake: a promising electrocatalyst for sensor and photocatalyst for the degradation of postharvest fungicide (carbendazim). ACS Appl Mater Interfaces 11:37172–37183. https://doi.org/37110.31021/acsami.37179b07336

    CAS  PubMed  Google Scholar 

  53. Veerakumar P, Jaysiva G, Chen SM, Lin KC (2022) Development of palladium on bismuth sulfide nanorods as a bifunctional nanomaterial for efficient electrochemical detection and photoreduction of Hg (II) ions. ACS Appl Mater Interfaces 14:5908–5920. https://doi.org/5910.1021/acsami.5901c16723

    CAS  PubMed  Google Scholar 

  54. Kokulnathan T, Kumar EA, Wang TJ (2020) Design and in situ synthesis of titanium carbide/boron nitride nanocomposite: investigation of electrocatalytic activity for the sulfadiazine sensor. ACS Sustain Chem Eng 8:12471–12481. https://doi.org/12410.11021/acssuschemeng.12470c03281

    CAS  Google Scholar 

  55. Pham TSH, Hasegawa S, Mahon P, Guerin K, Dubois M, Yu AM (2022) Graphene nanocomposites based eectrochemical sensing platform for simultaneous detection of multi-drugs. Electroanalysis 34:435–444. https://doi.org/410.1002/elan.202100485

    CAS  Google Scholar 

  56. Freitas AA, Vieira IC (2022) Detection of carbendazim in natural waters using a sensor based on magnetite nanoparticles modified with ascorbic acid/beta-cyclodextrin. Electroanalysis 34:1772–1779

    Google Scholar 

  57. Guterres Silva LR, Santos Stefano J, Cornelio Ferreira Nocelli R, Campos Janegitz B (2023) 3D electrochemical device obtained by additive manufacturing for sequential determination of paraquat and carbendazim in food samples. Food Chem 406:135038–135038. https://doi.org/135010.131016/j.foodchem.132022.135038

    CAS  PubMed  Google Scholar 

  58. Palanisamy S, Alagumalai K, Chiesa M, Kim SC (2023) Rational design of Nd2O3 decorated functionalized carbon nanofiber composite for selective electrochemical detection of carbendazim fungicides in vegetables, water, and soil samples. Environ Res 219:115140. https://doi.org/115110.111016/j.envres.112022.115140

    CAS  PubMed  Google Scholar 

  59. Li W, Wang P, Chu B, Chen X, Peng Z, Chu J, Lin R, Gu Q, Lu J, Wu D (2023) A highly-sensitive sensor based on carbon nanohorns@reduced graphene oxide coated by gold platinum core-shell nanoparticles for electrochemical detection of carbendazim in fruit and vegetable juice. Food Chem 402:134197. https://doi.org/134110.131016/.foodchem.132022.134197

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Zhejiang Public Welfare Technology Application Research Project (LGG19B050001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuexiang Weng or Jiu-Ju Feng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

► The G-PtNi/3D-NPC was fabricated by the high-temperature calcination.

► The combination of graphene and PtNi NPs displays favorable synergetic effects.

► A highly sensitive and selective sensor for CBZ was constructed based on G-PtNi/3D-NPC.

► The method had great practicality for the detection of CBZ in environmental samples.

Supplementary materials

ESM 1:

Figures S1–S2, Tables S1–S2 (DOCX 349 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Zhu, YP., Wang, AJ. et al. Simple pyrolysis of graphene-wrapped PtNi nanoparticles supported on hierarchically N-doped porous carbon for sensitive detection of carbendazim. Microchim Acta 190, 211 (2023). https://doi.org/10.1007/s00604-023-05759-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05759-2

Keywords

Navigation