Abstract
Let R be any associative ring with 1, n ≥ 3, and let A, B be two-sided ideals of R. In our previous joint works with Roozbeh Hazrat [17], [15], we have found a generating set for the mixed commutator subgroup [E(n, R, A); E(n, R, B)]. Later in [29], [34] we noticed that our previous results can be drastically improved and that [E(n, R, A); E(n, R, B)] is generated by
(1) the elementary conjugates zij (ab, c) = tij (c)tji(ab)tij (–c) and zij (ba, c), and
(2) the elementary commutators [tij (a), tji(b)],
where 1 ≤ i ≠= j ≤ n, a ∈ A, b ∈ B, c ∈ R. Later in [33], [35] we noticed that for the second type of generators, it even suffices to fix one pair of indices (i, j). Here we improve the above result in yet another completely unexpected direction and prove that [E(n, R, A); E(n, R, B)] is generated by the elementary commutators [tij (a), thk(b)] alone, where 1 ≤ i ≠ = j ≤ n, 1 ≤ h ≠ = k ≤ n, a ∈ A, b ∈ B. This allows us to revise the technology of relative localisation and, in particular, to give very short proofs for a number of recent results, such as the generation of partially relativised elementary groups E(n, A)E(n, B), multiple commutator formulas, commutator width, and the like.
Similar content being viewed by others
References
H. Apte, A. Stepanov, Local-global principle for congruence subgroups of Chevalley groups, Cent. Eur. J. Math. 12 (2014), no. 6, 801–812.
A. Bak, Non-abelian K-theory: The nilpotent class of K1 and general stability, K– Theory 4 (1991), 363–397.
A. Bak, N. Vavilov, Structure of hyperbolic unitary groups I: elementary subgroups, Algebra Colloquium 7 (2000), no. 2, 159–196.
H. Bass, K-theory and stable algebra, Inst. Hautes Études Sci. Publ. Math. (1964), no. 22, 5–60.
З. И. Боревич, Н. А. Вавилов, Располо ение подгрупп в полной линии группа над коммутативным кольком, Тр. МИАН СССР 165 (1984), 24–42. Engl. transl.: Z. I. Borevich, N. A. Vavilov, Arrangement of subgroups in the general linear group over a commutative ring, Proc. Steklov Inst. Math. 165 (1985), 27–46.
R. Hazrat, Dimension theory and nonstable K1 of quadratic modules, K-Theory 27 (2002), 293–328.
R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, The yoga of commutators, J. Math. Sci. 179 (2011), no. 6, 662–678.
R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, Commutator width in Chevalley groups, Note di Matematica 33 (2013), no. 1, 139–170.
R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, The yoga of commutators, further applications, J. Math. Sci. 200 (2014), no. 6, 742–768.
R. Hazrat, N. Vavilov, Bak’s work on the K-theory of rings, with an appendix by Max Karoubi, J. K-Theory 4 (2009), 1–65.
R. Hazrat, N. Vavilov, Zuhong Zhang, Relative unitary commutator calculus and applications, J. Algebra 343 (2011) 107–137.
R. Hazrat, N. Vavilov, Zuhong Zhang, Relative commutator calculus in Chevalley groups, J. Algebra 385 (2013), 262–293.
R. Hazrat, N. Vavilov, Zuhong Zhang Generation of relative commutator subgroups in Chevalley groups, Proc. Edinburgh Math. Soc. 59 (2016), 393–410.
R. Hazrat, N. Vavilov, Zuhong Zhang, Multiple commutator formulas for unitary groups, Israel J. Math. 219 (2017), 287–330.
R. Hazrat, N. Vavilov, Zuhong Zhang, The commutators of classical groups, J. Math. Sci. 222 (2017), no. 4, 466–515.
R. Hazrat, Zuhong Zhang, Generalized commutator formula, Commun. Algebra 39 (2011), no. 4, 1441–1454.
R. Hazrat, Zuhong Zhang, Multiple commutator formula, Israel J. Math. 195 (2013), 481–505.
W. van der Kallen, A group structure on certain orbit sets of unimodular rows, J. Algebra 82 (1983), 363–397.
A. W. Mason, On subgroup of GL(n, A) which are generated by commutators, II, J. reine angew. Math. 322 (1981), 118–135.
A. W. Mason, W. W. Stothers, On subgroups of GL(n, A) which are generated by commutators, Invent. Math. 23 (1974), 327–346.
A. Sivatski, A. Stepanov, On the word length of commutators in GLn(R), K-theory 17 (1999), 295–302.
A. Stepanov, Elementary calculus in Chevalley groups over rings, J. Prime Res. Math. 9 (2013), 79–95.
A. V. Stepanov, Non-abelian K-theory for Chevalley groups over rings, J. Math. Sci. 209 (2015), no. 4, 645–656.
A. Stepanov, Structure of Chevalley groups over rings via universal localization, J. Algebra 450 (2016), 522–548.
A. Stepanov, N. Vavilov, Decomposition of transvections: a theme with variations, K-Theory 19 (2000), no. 2, 109–153.
A. Stepanov, N. Vavilov, On the length of commutators in Chevalley groups, Israel J. Math. 185 (2011), 253–276.
А. А. Суслин, О структуре сnецuaьnоú линия без группы над колами мпо гочлeноe, Изв. АН СССР. Сер. матем. 41 (1977), ʙьш. 2, 235–252. Engl. transl.: A. A. Suslin, On the structure of the special linear group over polynomial rings, Math. USSR Izv. 11 (1977), no. 2, 221–238.
L. N. Vaserstein, On the normal subgroups of the GLn of a ring, in: Algebraic K-Theory, Evanston 1980, Lecture Notes in Math., Vol. 854, Springer, Berlin, 1981, pp. 454–465.
N. Vavilov, Unrelativised standard commutator formula, J. Math. Sci. 243 (2019), no. 4, 527–534.
N. Vavilov, Commutators of congruence subgroups in the arithmetic case, J. Math. Sci. 479 (2019), 5–22.
Н. А. Вавилов, А. В. Степанов, Стандартная коммутационная формула, Вестник Санкт-Петербург. унив. Сер. 1. Матем. Мех. Actp. (2008), no. 1, 9–14. Engl. transl.: N. A. Vavilov, A. V. Stepanov, Standard commutator formula, Vestnik St. Petersburg Univ.: Mathematics 41 (2008), no. 1, 5–8.
Н. А. Вавилов, А. В. Степанов, Ewe раз о стандартно коммутационноu формула, Вестник Санкт-Петербурга. унив. Сер. 1. Матем. Mex. Actp. (2010), no. 1, 16–22. Engl. transl.: N. A. Vavilov, A. V. Stepanov, Standard commutator formulae, revisited, Vestnik St. Petersburg Univ.: Mathematics 43 (2010), no. 1, 12–17.
N. Vavilov, Zuhong Zhang, Commutators of relative and unrelative elementary groups, revisited, J. Math. Sci. 485 (2019), 58–71.
N. Vavilov, Zuhong Zhang, Generation of relative commutator subgroups in Chevalley groups II, Proc. Edinburgh Math. Soc. 63 (2020), no. 2, 497–511.
N. Vavilov, Zuhong Zhang, Multiple commutators of elementary subgroups: end of the line, Linear Algebra Applications 599 (2020), 1–17.
N. Vavilov, Zuhong Zhang, Inclusions among commutators of elementary subgroups, arXiv:1911.10526 (2019).
N. Vavilov, Zuhong Zhang, Commutators of relative and unrelative elementary subgroups in Chevalley groups, arXiv:2003.07230 (2020).
N. Vavilov, Zuhong Zhang, Commutators of relative and unrelative elementary unitary groups, arXiv:2004.00576 (2020).
Hong You, On subgroups of Chevalley groups which are generated by commutators, J. Northeast Normal Univ. (1992), no. 2, 9–13.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
N. Vavilov is the work of the first author was supported by the Russian Science Foundation grant 17-11-01261.
Rights and permissions
About this article
Cite this article
VAVILOV, N., ZHANG, Z. COMMUTATORS OF ELEMENTARY SUBGROUPS: CURIOUSER AND CURIOUSER. Transformation Groups 28, 487–504 (2023). https://doi.org/10.1007/s00031-021-09662-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00031-021-09662-z