Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

COMMUTATORS OF ELEMENTARY SUBGROUPS: CURIOUSER AND CURIOUSER

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Let R be any associative ring with 1, n ≥ 3, and let A, B be two-sided ideals of R. In our previous joint works with Roozbeh Hazrat [17], [15], we have found a generating set for the mixed commutator subgroup [E(n, R, A); E(n, R, B)]. Later in [29], [34] we noticed that our previous results can be drastically improved and that [E(n, R, A); E(n, R, B)] is generated by

(1) the elementary conjugates zij (ab, c) = tij (c)tji(ab)tij (–c) and zij (ba, c), and

(2) the elementary commutators [tij (a), tji(b)],

where 1 ≤ i ≠= jn, aA, bB, cR. Later in [33], [35] we noticed that for the second type of generators, it even suffices to fix one pair of indices (i, j). Here we improve the above result in yet another completely unexpected direction and prove that [E(n, R, A); E(n, R, B)] is generated by the elementary commutators [tij (a), thk(b)] alone, where 1 ≤ i ≠ = jn, 1 ≤ h ≠ = kn, aA, bB. This allows us to revise the technology of relative localisation and, in particular, to give very short proofs for a number of recent results, such as the generation of partially relativised elementary groups E(n, A)E(n, B), multiple commutator formulas, commutator width, and the like.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Apte, A. Stepanov, Local-global principle for congruence subgroups of Chevalley groups, Cent. Eur. J. Math. 12 (2014), no. 6, 801–812.

    MathSciNet  MATH  Google Scholar 

  2. A. Bak, Non-abelian K-theory: The nilpotent class of K1 and general stability, K– Theory 4 (1991), 363–397.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Bak, N. Vavilov, Structure of hyperbolic unitary groups I: elementary subgroups, Algebra Colloquium 7 (2000), no. 2, 159–196.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Bass, K-theory and stable algebra, Inst. Hautes Études Sci. Publ. Math. (1964), no. 22, 5–60.

  5. З. И. Боревич, Н. А. Вавилов, Располо ение подгрупп в полной линии группа над коммутативным кольком, Тр. МИАН СССР 165 (1984), 24–42. Engl. transl.: Z. I. Borevich, N. A. Vavilov, Arrangement of subgroups in the general linear group over a commutative ring, Proc. Steklov Inst. Math. 165 (1985), 27–46.

  6. R. Hazrat, Dimension theory and nonstable K1 of quadratic modules, K-Theory 27 (2002), 293–328.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, The yoga of commutators, J. Math. Sci. 179 (2011), no. 6, 662–678.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, Commutator width in Chevalley groups, Note di Matematica 33 (2013), no. 1, 139–170.

  9. R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, The yoga of commutators, further applications, J. Math. Sci. 200 (2014), no. 6, 742–768.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Hazrat, N. Vavilov, Bak’s work on the K-theory of rings, with an appendix by Max Karoubi, J. K-Theory 4 (2009), 1–65.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Hazrat, N. Vavilov, Zuhong Zhang, Relative unitary commutator calculus and applications, J. Algebra 343 (2011) 107–137.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Hazrat, N. Vavilov, Zuhong Zhang, Relative commutator calculus in Chevalley groups, J. Algebra 385 (2013), 262–293.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Hazrat, N. Vavilov, Zuhong Zhang Generation of relative commutator subgroups in Chevalley groups, Proc. Edinburgh Math. Soc. 59 (2016), 393–410.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Hazrat, N. Vavilov, Zuhong Zhang, Multiple commutator formulas for unitary groups, Israel J. Math. 219 (2017), 287–330.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Hazrat, N. Vavilov, Zuhong Zhang, The commutators of classical groups, J. Math. Sci. 222 (2017), no. 4, 466–515.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Hazrat, Zuhong Zhang, Generalized commutator formula, Commun. Algebra 39 (2011), no. 4, 1441–1454.

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Hazrat, Zuhong Zhang, Multiple commutator formula, Israel J. Math. 195 (2013), 481–505.

    Article  MathSciNet  MATH  Google Scholar 

  18. W. van der Kallen, A group structure on certain orbit sets of unimodular rows, J. Algebra 82 (1983), 363–397.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. W. Mason, On subgroup of GL(n, A) which are generated by commutators, II, J. reine angew. Math. 322 (1981), 118–135.

    MathSciNet  MATH  Google Scholar 

  20. A. W. Mason, W. W. Stothers, On subgroups of GL(n, A) which are generated by commutators, Invent. Math. 23 (1974), 327–346.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Sivatski, A. Stepanov, On the word length of commutators in GLn(R), K-theory 17 (1999), 295–302.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Stepanov, Elementary calculus in Chevalley groups over rings, J. Prime Res. Math. 9 (2013), 79–95.

    MathSciNet  MATH  Google Scholar 

  23. A. V. Stepanov, Non-abelian K-theory for Chevalley groups over rings, J. Math. Sci. 209 (2015), no. 4, 645–656.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Stepanov, Structure of Chevalley groups over rings via universal localization, J. Algebra 450 (2016), 522–548.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Stepanov, N. Vavilov, Decomposition of transvections: a theme with variations, K-Theory 19 (2000), no. 2, 109–153.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Stepanov, N. Vavilov, On the length of commutators in Chevalley groups, Israel J. Math. 185 (2011), 253–276.

    Article  MathSciNet  MATH  Google Scholar 

  27. А. А. Суслин, О структуре сnецuaьnоú линия без группы над колами мпо гочлeноe, Изв. АН СССР. Сер. матем. 41 (1977), ʙьш. 2, 235–252. Engl. transl.: A. A. Suslin, On the structure of the special linear group over polynomial rings, Math. USSR Izv. 11 (1977), no. 2, 221–238.

  28. L. N. Vaserstein, On the normal subgroups of the GLn of a ring, in: Algebraic K-Theory, Evanston 1980, Lecture Notes in Math., Vol. 854, Springer, Berlin, 1981, pp. 454–465.

  29. N. Vavilov, Unrelativised standard commutator formula, J. Math. Sci. 243 (2019), no. 4, 527–534.

    Article  MathSciNet  MATH  Google Scholar 

  30. N. Vavilov, Commutators of congruence subgroups in the arithmetic case, J. Math. Sci. 479 (2019), 5–22.

    MathSciNet  Google Scholar 

  31. Н. А. Вавилов, А. В. Степанов, Стандартная коммутационная формула, Вестник Санкт-Петербург. унив. Сер. 1. Матем. Мех. Actp. (2008), no. 1, 9–14. Engl. transl.: N. A. Vavilov, A. V. Stepanov, Standard commutator formula, Vestnik St. Petersburg Univ.: Mathematics 41 (2008), no. 1, 5–8.

  32. Н. А. Вавилов, А. В. Степанов, Ewe раз о стандартно коммутационноu формула, Вестник Санкт-Петербурга. унив. Сер. 1. Матем. Mex. Actp. (2010), no. 1, 16–22. Engl. transl.: N. A. Vavilov, A. V. Stepanov, Standard commutator formulae, revisited, Vestnik St. Petersburg Univ.: Mathematics 43 (2010), no. 1, 12–17.

  33. N. Vavilov, Zuhong Zhang, Commutators of relative and unrelative elementary groups, revisited, J. Math. Sci. 485 (2019), 58–71.

    MathSciNet  MATH  Google Scholar 

  34. N. Vavilov, Zuhong Zhang, Generation of relative commutator subgroups in Chevalley groups II, Proc. Edinburgh Math. Soc. 63 (2020), no. 2, 497–511.

    Article  MathSciNet  MATH  Google Scholar 

  35. N. Vavilov, Zuhong Zhang, Multiple commutators of elementary subgroups: end of the line, Linear Algebra Applications 599 (2020), 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  36. N. Vavilov, Zuhong Zhang, Inclusions among commutators of elementary subgroups, arXiv:1911.10526 (2019).

  37. N. Vavilov, Zuhong Zhang, Commutators of relative and unrelative elementary subgroups in Chevalley groups, arXiv:2003.07230 (2020).

  38. N. Vavilov, Zuhong Zhang, Commutators of relative and unrelative elementary unitary groups, arXiv:2004.00576 (2020).

  39. Hong You, On subgroups of Chevalley groups which are generated by commutators, J. Northeast Normal Univ. (1992), no. 2, 9–13.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. ZHANG.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

N. Vavilov is the work of the first author was supported by the Russian Science Foundation grant 17-11-01261.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

VAVILOV, N., ZHANG, Z. COMMUTATORS OF ELEMENTARY SUBGROUPS: CURIOUSER AND CURIOUSER. Transformation Groups 28, 487–504 (2023). https://doi.org/10.1007/s00031-021-09662-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-021-09662-z

Navigation