In his seminal paper, half a century ago, Hyman Bass established commutator formulas for a (stable) general linear group, which were the key step in defining the group K 1. Namely, he proved that for an associative ring A with identity,
where GL(A) is the stable general linear group and E(A) is its elementary subgroup. Since then, various commutator formulas have been studied in stable and non-stable settings for classical groups, algebraic groups, and their analogs, and mostly in relation to subnormal subgroups of these groups. The basic classical theorems and methods developed for their proofs are associated with the names of the heroes of classical algebraic K-theory: Bak, Quillen, Milnor, Suslin, Swan, Vaserstein, and others.
One of the dominant techniques in establishing commutator type results is localization. In the present paper, some recent applications of localization methods to the study (higher/relative) commutators in the groups of points of algebraic and algebraic-like groups, such as general linear groups GL(n,A), unitary groups GU(2n,A, Λ), and Chevalley groups G(Φ,A), are described. Some auxiliary results and corollaries of the main results are also stated.
The paper provides a general overview of the subject and covers the current activities. It contains complete proofs borrowed from our previous papers and expositions of several main results to give the reader a self-contained source.
Similar content being viewed by others
References
E. Abe, “Whitehead groups of Chevalley groups over polynomial rings,” Commun. Algebra, 11, No. 12, 1271–1308 (1983).
E. Abe, “Chevalley groups over commutative rings,” in: Proceedings of the conference on Radical Theory, Sendai (1988), pp. 1–23.
E. Abe, “Normal subgroups of Chevalley groups over commutative rings,” Contemp. Math., 83, 1–17 (1989).
M. Akhavan-Malayeri, “Writing certain commutators as products of cubes in free groups,” J. Pure Appl. Algebra, 177, No. 1, 1–4 (2003).
M. Akhavan-Malayeri, “Writing commutators of commutators as products of cubes in groups,” Commun. Algebra, 37, 2142–2144 (2009).
H. Apte and A. Stepanov, “Local-global principle for congruence subgroups of Chevalley groups,” Central Europ. J. Math., 12, No. 6, 801–812 (2014).
A. Bak, “The stable structure of quadratic modules,” Thesis, Columbia University (1969).
A. Bak, K-Theory of Forms, Princeton University Press. Princeton (1981).
A. Bak, “Subgroups of the general linear group normalized by relative elementary groups,” Lecture Notes Math., 967, 1–22 (1982).
A. Bak, “Non-abelian K-theory: the nilpotent class of K1 and general stability,” K-Theory, 4, 363–397 (1991).
A. Bak, R. Basu, and R. A. Rao, “Local-global principle for transvection groups,” Proc. Amer. Math. Soc., 138, No. 4, 1191–1204 (2010).
A. Bak, R. Hazrat, and N. A. Vavilov, “Localization-completion strikes again: relative K1 is nilpotent by abelian,” J. Pure Appl. Algebra, 213, 1075–1085 (2009).
A. Bak and A. Stepanov, “Dimension theory and nonstable K-theory for net groups,” Rend. Sem. Mat. Univ. Padova, 106, 207–253 (2001).
A. Bak and N. A. Vavilov, “Normality for elementary subgroup functors,” Math. Proc. Cambridge Phil. Soc., 118, No. 1, 35–47 (1995).
A. Bak and N. A. Vavilov, “Structure of hyperbolic unitary groups. I. Elementary subgroups,” Algebra Colloq. 7, No. 2, 159–196 (2000).
H. Bass, “K-theory and stable algebra,” Inst. Hautes Études Sci. Publ. Math., No. 22, 5–60 (1964).
H. Bass, J. Milnor, and J.-P. Serre, “Solution of the congruence subgroup problem for SL n (n ≥ 3) and Sp2n (n ≥ 2),” Inst. Hautes Études Sci. Publ. Math., No. 33, 59–133 (1967).
H. Bass, “Unitary algebraic K-theory,” Lecture Notes Math., 343, 57–265 (1973).
H. Bass, Algebraic K-theory, Benjamin, New York (1968).
R. Basu, “Topics in Classical Algebraic K-theory,” Ph. D. Thesis, Tata Institute of Fundamental Research, Mumbai (2007).
R. Basu, “Local-global principle for general quadratic and general hermitian groups and the nilpotence of KH1,” arXiv:1412.3631v1 (2014).
R. Basu, R. A. Rao, and R. Khanna, “On Quillen’s local global principle,” Contemp. Math., 390, 17–30 (2005).
Z. Borewicz and N. A. Vavilov, “The distribution of subgroups in the full linear group over a commutative ring,” Proc. Steklov Institute Math., 3, 27–46 (1985).
P. Chattopadhya and R. A. Rao, “Excision and elementary symplectic action,” preprint, 1–14 (2012).
R. K. Dennis and L. N. Vaserstein, “On a question of M. Newman on the number of commutators,” J. Algebra, 118, 150–161 (1988).
R. K. Dennis and L. N. Vaserstein, “Commutators in linear groups,” K-Theory, 2, 761–767 (1989).
E. Ellers and N. Gordeev, “On the conjectures of J. Thompson and O. Ore,” Trans. Amer. Math. Soc., 350, 3657–3671 (1998).
D. Estes and J. Ohm, “Stable range in commutative rings,” J. Algebra, 7, No. 3, 343–362 (1967).
S. C. Geller and C. A. Weibel, “K2 measures excision for K1,” Proc. Amer. Math. Soc., 80, No. 1, 1–9 (1980).
S. C. Geller and C. A. Weibel, “K1(A,B, I),” J. Reine Angew. Math., 342, 12–34 (1983).
S. C. Geller and C. A. Weibel, “Subroups of elementary and Steinberg groups of congruence level I 2,” J. Pure Appl. Algebra, 35, 123–132 (1985).
S. C. Geller and C. A. Weibel, “K1(A,B, I), II,” K-Theory, 2, No. 6, 753–760 (1989).
V. N. Gerasimov, “The group of units of the free product of rings,” Mat. Sb., 134, 42–65 (1987).
R. M. Guralnick and G. Malle, “Products of conjugacy classes and fixed point spaces,” J. Amer. Math. Soc., 25, No. 1, 77–121 (2012).
G. Habdank, “A classification of subgroups of Λ-quadratic groups normalized by relative elementary subgroups,” Dissertation, Universität Bielefeld (1987).
G. Habdank, “A classification of subgroups of Λ-quadratic groups normalized by relative elementary subgroups,” Adv. Math., 110, No. 2, 191–233 (1995).
A. J. Hahn and O. T. O’Meara, The Classical Groups and K-Theory, Springer, Berlin etc. (1989).
R. Hazrat, “Dimension theory and non-stable K1 of quadratic module,” K-Theory, 27, 293–327 (2002).
R. Hazrat, V. Petrov, and N. Vavilov, “Relative subgroups in Chevalley groups,” J. K-Theory, 5, 603–618 (2010).
R. Hazrat, A. Stepanov, N. Vavilov, and Z. Zhang, “The yoga of commutators,” Zap. Nauchn. Semin. POMI, 287, 53–82 (2011).
R. Hazrat, A. Stepanov, N. Vavilov, and Z. Zhang, “Commutators width in Chevalley groups,” Note di Matematica, 33, No. 1, 139–170 (2013).
R. Hazrat, A. Stepanov, N. Vavilov, and Z. Zhang, “Multiple commutator formula. II” (2012).
R. Hazrat and N. Vavilov, “K1 of Chevalley groups are nilpotent,” J. Pure Appl. Algebra, 179, 99–116 (2003).
R. Hazrat and N. Vavilov, “Bak’s work on K-theory of rings (with an appendix by Max Karoubi), K-Theory 4, No. 1, 1–65 (2009).
R. Hazrat, N. Vavilov, and Z. Zhang, “Relative commutator calculus in unitary groups, and applications,” J. Algebra, 343, 107–137 (2011).
R. Hazrat, N. Vavilov, and Z. Zhang, “Relative commutator calculus in Chevalley groups, and applications,” J. Algebra, 385, 262–293 (2013).
R. Hazrat, N. Vavilov, and Z. Zhang, “Multiple commutator formulas for unitary groups,” Israel J. Math., (to appear).
R. Hazrat, N. Vavilov, and Z. Zhang, “Generation of relative commutator subgroups in Chevalley groups,” Proc. Edinburgh Math. Soc., 59, 393–410 (2016).
R. Hazrat and Z. Zhang, “Generalized commutator formula,” Commun. Algebra, 39, No. 4, 1441–1454 (2011).
R. Hazrat and Z. Zhang, “Multiple commutator formula,” Israel J. Math., 195, 481–505 (2013).
D. A. Jackson, “Basic commutator in weights six and seven as relators,” Commun. Algebra, 36, 2905–2909 (2008).
D. A. Jackson, A. M. Gaglione, and D. Spellman, “Basic commutator as relators,” J. Group Theory, 5, 351–363 (2001).
D. A. Jackson, A. M. Gaglione, and D. Spellman, “Weight five basic commutator as relators,” Contemp. Math., 511, 39–81 (2010).
W. van der Kallen, “Another presentation for Steinberg groups,” Indag. Math., 39, No. 4, 304–312 (1977).
W. van der Kallen, “SL3(ℂ[x]) does not have bounded word length,” Lecture Notes Math., 966, 357–361 (1982).
W. van der Kallen, “A module structure on certain orbit sets of unimodular rows,” J. Pure Appl. Algebra, 57, No. 3, 281–316 (1989).
W. van der Kallen, B. Magurn, and L. Vaserstein, “Absolute stable rank and Witt cancellation for non-commutative rings,” Invent. Math., 91, 525–542 (1988).
L.-C. Kappe and R. F. Morse, “On commutators in groups,” in: Groups St. Andrews, 2005, Vol. II, Cambridge Univ. Press, Cambridge (2007), pp. 531–558.
S. Khlebutin, “Elementary subgroups of linear groups over rings,” PhD. thesis, Moscow State Univ. (1987).
M.-A. Knus, Quadratic and Hermitian Forms over Rings, Springer Verlag, Berlin etc. (1991).
V. I. Kopeiko, “The stabilization of symplectic groups over a polynomial ring,” Math. USSR Sb., 34, 655–669 (1978).
N. Kumar and R. A. Rao, “Quillen–Suslin theory for a structure theorem for the elementary symplectic group,” Preprint (2012).
Tsit-Yuen Lam, Serre’s Problem on Projective Modules, Springer Verlag, Berlin (2006).
M. Larsen and A. Shalev, “Word maps and Waring type problems,” J. Amer. Math. Soc.. 22, 437–466 (2009).
M. Larsen, A. Shalev, and Pham Huu Tiep, “The Waring problem for finite simple groups,” Ann. Math., 174, 1885–1950 (2011).
A. V. Lavrenov, “The unitary Steinberg group is centrally closed,” St. Petersburg Math. J., 24, No. 5, 783–794 (2012).
F. Li, “The structure of symplectic group over arbitrary commutative rings,” Acta Math. Sinica, 3, No. 3, 247–255 (1987).
F. Li, “The structure of orthogonal groups over arbitrary commutative rings,” Chinese Ann. Math. Ser. B, 10, No. 3, 341–350 (1989).
F. Li and M. Liu, “Generalized sandwich theorem,” K-Theory, 1, 171–184 (1987).
M. Liebeck, E. A. O’Brien, A. Shalev, and Pham Huu Tiep, “The Ore conjecture,” J. Europ. Math. Soc., 12, 939–1008 (2010).
M. Liebeck, E. A. O’Brien, A. Shalev, and Pham Huu Tiep, “Commutators in finite quasisimple groups,” Bull. London Math. Soc., 43, 1079–1092 (2011).
M. Liebeck, E. A. O’Brien, A. Shalev, and Pham Huu Tiep, “Products of squares in finite simple groups,” Proc. Amer. Math. Soc., 43, No. 6, 1079–1092 (2012).
A. Yu. Luzgarev, “Overgroups of E(F 4,R) in G(E 6,R),” St. Petersburg J. Math., 20, No. 5, 148–185 (2008).
A. Yu. Luzgarev and A. K. Stavrova, “Elementary subgroups of isotropic reductive groups are perfect,” St. Petersburg Math. J., 24, No. 5, 881–890 (2012).
A. W. Mason, “A note on subgroups of GL(n,A) which are generated by commutators,” J. London Math. Soc., 11, 509–512 (1974).
A. W. Mason, “On subgroups of GL(n,A) which are generated by commutators. II,” J. Reine Angew. Math., 322, 118–135 (1981).
A. W. Mason, “A further note on subgroups of GL(n,A) which are generated by commutators,” Arch. Math., 37, No. 5, 401–405 (1981).
A. W. Mason and W. W. Stothers, “On subgroups of GL(n,A) which are generated by commutators,” Invent. Math., 23, 327–346 (1974).
H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés,” Ann. Sci. École Norm. Sup., (4) 2, 1–62 (1969).
J. Milnor, “Algebraic K-theory and quadratic forms,” Invent. Math., 9, 318–344 (1970).
J. Milnor, Introduction to algebraic K-theory, Princeton Univ. Press, Princeton, N. J. (1971).
C. Moore, “Group extensions of p-adic and adelic linear groups,” Publ. Math. Inst. Hautes Études Sci., 35, 157–222 (1968).
D. W. Morris, “Bounded generation of SL(n,A) (after D. Carter, G. Keller, and E. Paige),” New York J. Math., 13, 383–421 (2008).
V. A. Petrov, “Overgroups of unitary groups,” K-Theory, 29, 147–174 (2003).
V. A. Petrov, “Odd unitary groups,” J. Math. Sci., 130, No. 3, 4752–4766 (2003).
V. A. Petrov, “Overgroups of classical groups,” Doktorarbeit Univ. St.-Petersburg, 1–129 (2005).
V. A. Petrov and A. K. Stavrova, “Elementary subgroups of isotropic reductive groups,” St. Petersburg Math. J., 20, No. 3, 160–188 (2008).
D. Quillen, “Projective modules over polynomial rings,” Invent. Math., 36, 166-172 (1976).
D. Quillen, “Higher algebraic K-theory. I,” in: Lecture Notes Math., 341, Springer, Berlin (1973), pp. 85–147.
J. Rosenberg, Algebraic K-Theory and its Applications, Springer-Verlag, New York (1994).
Sh. Rosset, “The higher lower central series,” Israel J. Math., 73, No. 3, 257–279 (1991).
A. Sivatski and A. Stepanov, “On the word length of commutators in GL n (R),” K-Theory, 17, 295–302 (1999).
A. Shalev, “Commutators, words, conjugacy classes and character methods,” Turk. J. Math., 31, 131–148 (2007).
A. Shalev, “Word maps, conjugacy classes, and a noncommutative Waring-type theorem,” Ann. Math., 170, No. 3, 1383–1416 (2009).
A. Smolensky, B. Sury, and N. A. Vavilov, “Gauss decomposition for Chevalley groups revisited,” Intern. J. Group Theory, 1, No. 1, 3–16 (2012).
A. Stavrova, “Homotopy invariance of non-stable K1-functors,” J. K-Theory, 13, 199–248 (2014).
M. R. Stein, “Generators, relations and coverings of Chevalley groups over commutative rings,” Amer. J. Math., 93, No. 4, 965–1004 (1971).
A. V. Stepanov, “Structure of Chevalley groups over rings via universal localization,” J. Algebra, 450, 522–548 (2016).
A. V. Stepanov and N. A. Vavilov, “Decomposition of transvections: a theme with variations,” K-Theory, 19, 109–153 (2000).
A. V. Stepanov and N. A. Vavilov, “On the length of commutators in Chevalley groups,” Israel J. Math., 185, 253–276 (2011).
A. V. Stepanov, N. A. Vavilov, and H. You, “Overgroups of semi-simple subgroups: localization approach,” Preprint (2012).
A. Stepanov, “Nonabelian K-theory for Chevalley groups over rings,” J. Math. Sci., 209, No. 4, 645–656 (2015).
R. Steinberg, “Générateurs, rélations et revêtements des groupes algébriques,” in: Colloque Théorie des Groupes Algébriques (Bruxelles, 1962), Guthier–Villar, Paris (1962), pp. 113–127.
R. Steinberg, Lectures on Chevalley groups Yale, University (1967).
A. A. Suslin, “The structure of the special linear group over polynomial rings,” Math. USSR Izv., 11, No. 2, 235–253 (1977).
A. A. Suslin and V. I. Kopeiko, “Quadratic modules and orthogonal groups over polynomial rings,” J. Sov. Math., 20, No. 6, 2665–2691 (1982).
K. Suzuki, “Normality of the elementary subgroups of twisted Chevalley groups over commutative rings,” J. Algebra, 175, No. 3, 526–536 (1995).
R. G. Swan, “Excision in algebraic K-theory,” J. Pure Appl. Algebra, 1, No. 3, 221–252 (1971).
G. Taddei, Schémas de Chevalley–Demazure, fonctions représentatives et théorème de normalité, Thèse, Univ. de Genève (1985).
G. Taddei, “Normalité des groupes élémentaire dans les groupes de Chevalley sur un anneau,” Contemp. Math., 55, No. 2, 693–710 (1986).
G. Tang, “Hermitian groups and K-theory,” K-Theory, 13, No. 3, 209–267 (1998).
J. Tits, “Systèmes générateurs de groupes de congruences,” C. R. Acad. Sci. Paris, Sér A, 283, 693–695 (1976).
M. S. Tulenbaev, “The Steinberg group of a polynomial ring,” Math. USSR Sb., 45, No. 1, 139–154 (1983).
M. S. Tulenbaev, “The Schur multiplier of the group of elementary matrices of finite order,” J. Sov. Math., 17, No. 4, 2062–2067 (1981).
L. N. Vaserstein, “On the normal subgroups of the GL n of a ring,” Lect. Notes Math., 854, 454–465 (1981).
L. N. Vaserstein, “The subnormal structure of general linear groups,” Math. Proc. Cambridge Phil. Soc., 99, 425–431 (1986).
L. N. Vaserstein, “On normal subgroups of Chevalley groups over commutative rings,” Tôhoku Math. J., 36, No. 5, 219–230 (1986).
L. N. Vaserstein, Normal subgroups of orthogonal groups over commutative rings. Amer. J. Math. 110, No. 5, 955–973 (1988).
L. N. Vaserstein, “Normal subgroups of symplectic groups over rings,” K-Theory, 2, No. 5, 647–673 (1989).
L. N. Vaserstein, “The subnormal structure of general linear groups over rings,” Math. Proc. Cambridge Phil. Soc., 108, No. 2, 219–229 (1990).
L. N. Vaserstein and A. A. Suslin, “Serre’s problem on projective modules over polynomial rings, and algebraic K-theory,” Math. USSR Izv., 10, 937–1001 (1978).
L. N. Vaserstein and H. You, “Normal subgroups of classical groups over rings,” J. Pure Appl. Algebra, 105, No. 1, 93–106 (1995).
N. A. Vavilov, “A note on the subnormal structure of general linear groups,” Math. Proc. Cambridge Phil. Soc., 107, No. 2, 193–196 (1990).
N. A. Vavilov, “Structure of Chevalley groups over commutative rings,” in: Proc. Conf. Non-associative algebras and related topics (Hiroshima – 1990), World Sci. Publ., London et al., (1991), pp. 219–335.
N. A. Vavilov, “A third look at weight diagrams,” Rend. Sem. Mat. Univ. Padova, 104, No. 1, 201–250 (2000).
N. A. Vavilov, A. Luzgarev, and A. Stepanov, “Calculations in exceptional groups over rings,” J. Math. Sci., 373, 48–72 (2009).
N. A. Vavilov and V. A. Petrov, “Overgroups of Ep(n,R),” St. Petersburg J. Math., 15, No. 4, 515–543 (2004).
N. A. Vavilov and E. B. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations,” Acta Applicandae Math., 45, 73–115 (1996).
N. A. Vavilov and A. V. Stepanov, “Standard commutator formula,” Vestnik St. Petersburg Univ., Ser. 1, 41, No. 1, 5–8 (2008).
N. A. Vavilov and A. V. Stepanov, “Overgroups of semi-simple groups,” Vestnik Samara State Univ., Ser. Nat. Sci., No. 3, 51–95 (2008).
N. A. Vavilov and A. V. Stepanov, “Standard commutator formulae, revisited,” Vestnik St. Petersburg State Univ., Ser.1, 43, No. 1, 12–17 (2010).
N. A. Vavilov and A. V. Stepanov, “Linear groups over general rings I. Generalities,” J. Math. Sci., 188, No. 5, 490–550 (2012).
N. A. Vavilov and Z. Zhang, “Subnormal subgroups of Chevalley groups. I. Cases E6 and E7,” Preprint (2015).
T. Vorst, “Polynomial extensions and excision K1,” Math. Ann., 244, 193–204 (1979).
M. Wendt, “\( \mathbb{A} \) 1-homotopy of Chevalley groups,” J. K-Theory, 5, No. 2, 245–287 (2010).
M. Wendt, “On homotopy invariance for homology of rank two groups,” J. Pure Appl. Algebra, 216, 2291–2301 (2012).
H. You, “On the solution to a question of D. G. James,” J. Northeast Normal Univ., No. 2, 39–44 (1982).
H. You, “On subgroups of Chevalley groups which are generated by commutators,” J. Northeast Normal Univ., No. 2, 9–13 (1992).
H. You, “Subgroups of classical groups normalised by relative elementary groups,” J. Pure Appl. Algebra, 216, 1040–1051 (2012).
Z. Zhang, “Lower K-theory of unitary groups,” Doktorarbeit Univ. Belfast, 1–67 (2007).
Z. Zhang, “Stable sandwich classification theorem for classical-like groups,” Math. Proc. Cambridge Phil. Soc., 143, No. 3, 607–619 (2007).
Z. Zhang, “Subnormal structure of non-stable unitary groups over rings,” J. Pure Appl. Algebra, 214, 622–628 (2010).
D. L. Costa and G. E. Keller, “Radix redux: normal subgroups of symplectic groups,” J. Reine Angew. Math., 427, 51–105 (1992).
D. L. Costa and G. E. Keller, “On the normal suggroups of G2(A),” Trans. Amer. Math. Soc., 351, 5051–5088 (1999).
Author information
Authors and Affiliations
Corresponding author
Additional information
Published in Zapiski Nauchnykh Seminarov POMI, Vol. 443, 2016, pp. 151–221.
Rights and permissions
About this article
Cite this article
Hazrat, R., Vavilov, N. & Zhang, Z. The Commutators of Classical Groups. J Math Sci 222, 466–515 (2017). https://doi.org/10.1007/s10958-017-3318-3
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10958-017-3318-3