Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Identification of nonlinear process described by neural fuzzy Hammerstein-Wiener model using multi-signal processing

  • Published:
Advances in Manufacturing Aims and scope Submit manuscript

Abstract

In this study, a novel approach for nonlinear process identification via neural fuzzy-based Hammerstein-Wiener model with process disturbance by means of multi-signal processing is presented. The Hammerstein-Wiener model consists of three blocks where a dynamic linear block is sandwiched between two static nonlinear blocks. Multi-signal sources are designed for achieving identification separation of the Hammerstein-Wiener process. The correlation analysis theory is utilized for estimating unknown parameters of output nonlinearity and linear block using separable signals, thus the interference of process disturbance is solved. Furthermore, the immeasurable intermediate variable and immeasurable noise term in identification model is taken over by auxiliary model output and estimate residuals, and then auxiliary model-based recursive extended least squares parameter estimation algorithm is derived to calculate parameters of the input nonlinearity and noise model. Finally, convergence analysis of the suggested identification scheme is derived using stochastic process theory. The simulation results indicate that proposed identification approach yields high identification accuracy and has good robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gou J, Liu H (2017) Hammerstein system identification with quantised inputs and quantised output observations. IET Control Theory A 11(4):593–599

  2. Zhang J, Chin KS, Lawrynczuk M (2018) Nonlinear model predictive control based on piecewise linear Hammerstein models. Nonlinear Dyn 92(3):1001–1021

    Article  MATH  Google Scholar 

  3. Mu B, Chen HF, Wang LY et al (2017) Recursive identification of Hammerstein systems: convergence rate and asymptotic normality. IEEE Trans Autom Control 62(7):3277–3292

    Article  MathSciNet  MATH  Google Scholar 

  4. Jia L, Li X, Chiu MS (2016) Correlation analysis based MIMO neuro-fuzzy Hammerstein model with noises. J Process Contr 41:76–91

    Article  Google Scholar 

  5. Cheng CM, Peng ZK, Zhang WM (2016) A novel approach for identification of cascade of Hammerstein model. Nonlinear Dyn 86(1):513–522

    Article  Google Scholar 

  6. Li F, Chen L, Wo S et al (2020) Modeling and parameter learning for the Hammerstein-Wiener model with disturbance. Meas Control 53(5/6):971–982

    Article  Google Scholar 

  7. Zhang B, Mao Z (2017) Bias compensation principle based recursive least squares identification method for Hammerstein nonlinear models. J Franklin Inst 354(3):1340–1355

    Article  MathSciNet  MATH  Google Scholar 

  8. Hagenblad A, Ljung J, Wills A (2008) Maximum likelihood identification of Wiener models. Automatica 44(11):2697–2705

    Article  MathSciNet  MATH  Google Scholar 

  9. Kazemi M, Arefi MM (2017) A fast iterative recursive least squares algorithm for Wiener model identification of highly nonlinear systems. ISA T 67:382–388

    Article  Google Scholar 

  10. Schoukens M, Rolain Y (2012) Parametric identification of parallel Wiener models. IEEE Trans Instrum Meas 61(10):2825–2832

    Article  Google Scholar 

  11. Li J, Hua C, Tang Y et al (2014) Stochastic gradient with changing forgetting factor-based parameter identification for Wiener systems. Appl Math Lett 33:40–45

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhou L, Li X, Pan F (2015) Gradient-based iterative identification for Wiener nonlinear models with non-uniform sampling. Nonlinear Dyn 76(1):627–634

    Article  MATH  Google Scholar 

  13. Quachio R, Garcia C (2019) MPC relevant identification method for Hammerstein and Wiener models. J Process Contr 80:78–88

    Article  Google Scholar 

  14. Bloemen HHJ, Chou CT, van den Boom TJJ et al (2001) Wiener model identification and predictive control for dual composition control of a distillation column. J Process Contr 11(6):601–620

    Article  Google Scholar 

  15. Al-Dhaifallah M, Nisar KS, Agarwal P et al (2017) Modeling and identification of heat exchanger process using least squares support vector machines. Therm Sci 21(6):2859–2869

    Article  Google Scholar 

  16. George SJ, Kamat S, Madhavan KP (2007) Modeling of pH process using wave net based Hammerstein model. J Process Contr 17(6):551–561

    Article  Google Scholar 

  17. Li F, Jia L, Peng D et al (2017) Neuro-fuzzy based identification method for Hammerstein output error model with colored noise. Neurocomputing 244:90–101

    Article  Google Scholar 

  18. Luo SX, Song YD (2018) Data-driven predictive control of Hammerstein-Wiener models based on subspace identification. Inform Sciences 422:447–461

    Article  MathSciNet  MATH  Google Scholar 

  19. Yu F, Mao Z, Jia M et al (2014) Recursive parameter identification of Hammerstein-Wiener systems with measurement noise. Signal Process 105:137–147

    Article  Google Scholar 

  20. Jeng JC, Lin YW (2018) Data-driven nonlinear control design using virtual reference feedback tuning based on block-oriented modeling of nonlinear models. Ind Eng Chem Res 57(22):7583–7599

    Article  Google Scholar 

  21. Li G, Wen C, Zheng WX et al (2011) Identification of a class of nonlinear autoregressive models with exogenous inputs based on kernel machines. IEEE T Signal Process 59(5):2146–2159

    Article  MathSciNet  MATH  Google Scholar 

  22. Ding B, Ping X (2012) Dynamic output feedback model predictive control for nonlinear models represented by Hammerstein-Wiener model. J Process Contr 22(9):1773–1784

    Article  Google Scholar 

  23. Wills A, Schon TB, Ljung L et al (2013) Identification of Hammerstein-Wiener models. Automatica 49(1):70–81

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhu Y (2002) Estimation of an N-L-N Hammerstein-Wiener model. Automatica 38(9):1607–1614

    Article  MathSciNet  MATH  Google Scholar 

  25. Voros J (2015) Iterative identification of nonlinear dynamic models with output backlash using three-block cascade models. Nonlinear Dyn 79(3):2187–2195

    Article  Google Scholar 

  26. Allafi W, Zajic I, Uddin K et al (2017) Parameter identification of the fractional-order Hammerstein-Wiener model using simplified refined instrumental variable fractional-order continuous time. IET Control Theory A 11(15):2591–2598

    Article  Google Scholar 

  27. Bai EW (2002) A blind approach to the Hammerstein-Wiener model identification. Automatica 38(6):967–979

    Article  MathSciNet  MATH  Google Scholar 

  28. Brouri A, Kadi L, Slassi S (2017) Frequency identification of Hammerstein-Wiener models with backlash input nonlinearity. Int J Control Autom Syst 15(5):2222–2232

    Article  Google Scholar 

  29. Li F, Yao K, Li B et al (2021) A novel learning algorithm of the neuro-fuzzy based Hammerstein-Wiener model corrupted by process noise. J Frankl Inst 358(3):2115–2137

    Article  MathSciNet  MATH  Google Scholar 

  30. Sung SW, Je CH, Lee J et al (2008) Improved system identification method for Hammerstein-Wiener processes. Ind Eng Chem Res 25(4):631–636

    Google Scholar 

  31. Wang DQ, Ding F (2012) Hierarchical least squares estimation algorithm for Hammerstein-Wiener models. IEEE Signal Proc Lett 19(2):825–828

    Article  Google Scholar 

  32. Ward MacArthur J (2012) A new approach for nonlinear process identification using orthonormal bases and ordinal splines. J Process Contr 22(2):375–389

    Article  Google Scholar 

  33. Yu F, Mao Z, Yuan P et al (2017) Recursive parameter identification for Hammerstein-Wiener models using modified EKF algorithm. ISA T 70:104–115

    Article  Google Scholar 

  34. Wang D, Ding F (2008) Extended stochastic gradient identification algorithms for Hammerstein-Wiener ARMAX models. Comput Math Appl 56:3157–3164

    MathSciNet  MATH  Google Scholar 

  35. Wang J, Chen T, Wang L (2009) A blind approach to identification of Hammerstein-Wiener models corrupted by nonlinear-process noise. In: Processing of the 7th Asian control conference, Hong Kong, China, 24−29 August, pp 1340−1345

  36. Ni B, Gilson M, Garnier H (2013) Refined instrumental variable method for Hammerstein-Wiener continuous-time model identification. IET Control Theory A7(9):1276–1286

    Article  MathSciNet  Google Scholar 

  37. Wang Z, Wang Y, Ji Z (2017) A novel two-stage estimation algorithm for nonlinear Hammerstein-Wiener models from noisy input and output data. J Frankl Inst 354:1937–1944

    Article  MATH  Google Scholar 

  38. Lang ZQ (1994) On identification of the controlled plants described by the Hammerstein models. IEEE Trans Automat Contr 39(3):569–573

    Article  MATH  Google Scholar 

  39. Navarro-Almanza R, Sanchez MA, Castro JR et al (2022) Interpretable Mamdani neuro-fuzzy model through context awareness and linguistic adaptation. Expert Syst Appl 189:116098. https://doi.org/10.1016/j.eswa.2021.116098

    Article  Google Scholar 

  40. Soto J, Castillo O, Melin P et al (2019) A new approach to multiple time series prediction using MIMO fuzzy aggregation models with modular neural networks. Int J Fuzzy Syst 21(5):1629–1648

    Article  Google Scholar 

  41. Soto J, Melin P, Castillo O (2018) A new approach for time series prediction using ensembles of IT2FNN models with optimization of fuzzy integrators. Int J Fuzzy Syst 20(3):701–728

    Article  MathSciNet  Google Scholar 

  42. Castillo O, Castro JR, Melin P et al (2014) Application of interval type-2 fuzzy neural networks in non-linear identification and time series prediction. Soft Comput 18(6):1213–1224

    Article  Google Scholar 

  43. Li J, Zong T, Lu G (2021) Parameter identification of Hammerstein-Wiener nonlinear systems with unknown time delay based on the linear variable weight particle swarm optimization. ISA T. https://doi.org/10.1016/j.isatra.2021.03.021

    Article  Google Scholar 

  44. Abouda SE, Abid DBH, Elloumi M et al (2019) Identification of nonlinear dynamic systems using fuzzy Hammerstein-Wiener systems. In: The 19th international conference on sciences and techniques of automatic control and computer engineering (STA), 24−26 March, Sousse, Tunisia, https://doi.org/10.1109/STA.2019.8717218

  45. Li F, Jia L, Peng D (2017) Identification method of neuro-fuzzy-based Hammerstein model with coloured noise. IET Control Theory A 11(17):3026–3037

    Article  MathSciNet  Google Scholar 

  46. Enqvist M, Ljung L (2005) Linear approximations of nonlinear FIR models for separable input processes. Automatica 41(3):459–473

    Article  MathSciNet  MATH  Google Scholar 

  47. Ding F, Wang F, Xu L et al (2017) Parameter identification for pseudo-linear models using the auxiliary model and the decomposition technique. IET Control Theory A 11(13):390–400

    Article  Google Scholar 

  48. Ljung L (1999) Model identification: theory for the user, 2nd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  49. Ding F, Gu Y (2012) Performance analysis of the auxiliary model-based least-squares identification algorithm for one-step state-delay systems. Int J Comput Math 89(15):2019–2028

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang Y, Ding F (2016) Recursive least squares algorithm and gradient algorithm for Hammerstein-Wiener models using the data filtering. Nonlinear Dyn 84(2):1045–1053

    Article  MATH  Google Scholar 

  51. Mohammadzadeh A, Rathinasamy S (2020) Energy management in photovoltaic battery hybrid systems: a novel type-2 fuzzy control. Int J Hydrogen Energ 45(41):20970–20982

    Article  Google Scholar 

  52. Mosavi A, Qasem SN, Shokri M et al (2020) Fractional-order fuzzy control approach for photovoltaic/battery systems under unknown dynamics, variable irradiation and temperature. Electronics 9(9):1455. https://doi.org/10.3390/electronics9091455

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Grant No. 62003151), the Natural Science Foundation of Jiangsu Province (Grant No. BK20191035), the Changzhou Sci&Tech Program (Grant No. CJ20220065), the “Blue Project” of Universities in Jiangsu Province, and Zhongwu Youth Innovative Talents Support Program in Jiangsu Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Li.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Jia, L. & Gu, Y. Identification of nonlinear process described by neural fuzzy Hammerstein-Wiener model using multi-signal processing. Adv. Manuf. 11, 694–707 (2023). https://doi.org/10.1007/s40436-022-00426-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40436-022-00426-w

Keywords

Navigation