Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Recursive least squares algorithm and gradient algorithm for Hammerstein–Wiener systems using the data filtering

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper considers the parameter estimation problems of Hammerstein–Wiener systems by using the data filtering technique. In order to improve the estimation accuracy, the data filtering-based recursive generalized extended least squares algorithm is derived. In order to improve the computational efficiency, the data filtering-based generalized extended stochastic gradient algorithm is derived for estimating the system parameters. Finally, the computational efficiency of the proposed algorithms is analyzed and compared. The simulation results indicate that the proposed algorithms can effectively estimate the parameters of Hammerstein–Wiener systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang, X.H., Ding, F.: Convergence of the recursive identification algorithms for multivariate pseudo-linear regressive systems. Int. J. Adapt. Control Signal Process. (2016). doi:10.1002/acs.2642

    Google Scholar 

  2. Luan, X.L., Shi, P., Liu, F.: Stabilization of networked control systems with random delays. IEEE Trans. Ind. Electron. 58(9), 4323–4330 (2013)

    Article  Google Scholar 

  3. Luan, X.L., Zhao, S.Y., Liu, F.: H-infinity control for discrete-time Markov jump systems with uncertain transition probabilities. IEEE Trans. Automat. Control 58(6), 1566–1572 (2013)

    Article  MathSciNet  Google Scholar 

  4. Shi, P., Luan, X.L., Liu, F.: H-infinity filtering for discrete-time systems with stochastic incomplete measurement and mixed delays. IEEE Trans. Ind. Electron. 59(6), 2732–2739 (2012)

    Article  Google Scholar 

  5. Xu, L.: A proportional differential control method for a time-delay system using the Taylor expansion approximation. Appl. Math. Comput. 236, 391–399 (2014)

    Article  MathSciNet  Google Scholar 

  6. Xu, L., Chen, L., Xiong, W.L.: Parameter estimation and controller design for dynamic systems from the step responses based on the Newton iteration. Nonlinear Dyn. 79(3), 2155–2163 (2015)

    Article  MathSciNet  Google Scholar 

  7. Xu, L.: Application of the Newton iteration algorithm to the parameter estimation for dynamical systems. J. Comput. Appl. Math. 288, 33–43 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Xu, L.: The damping iterative parameter identification method for dynamical systems based on the sine signal measurement. Signal Process. 120, 660–667 (2016)

  9. Chaudhary, N.I., Muhammad, M.A.Z.: Design of fractional adaptive strategy for input nonlinear Box–Jenkins systems. Signal Process. 116, 141–151 (2015)

    Article  Google Scholar 

  10. Ding, F., Wang, X.H., et al.: Recursive least squares parameter estimation for a class of output nonlinear systems based on the model decomposition. Circuits Syst. Signal Process. (2016). doi:10.1007/s00034-015-0190-6

    Google Scholar 

  11. Chong, M.S., Nesic, D., et al.: Parameter and state estimation of nonlinear systems using a multi-observer under the supervisory framework. IEEE Trans. Automat. Control 60(9), 2336–2349 (2015)

    Article  MathSciNet  Google Scholar 

  12. Ding, F.: System Identification—Performances Analysis for Identification Methods. Science Press, Beijing (2014)

    Google Scholar 

  13. Chen, H.B., Xiao, Y.S., et al.: Hierarchical gradient parameter estimation algorithm for Hammerstein nonlinear systems using the key term separation principle. Appl. Math. Comput. 247, 1202–1210 (2014)

    Article  MathSciNet  Google Scholar 

  14. Vörös, J.: Iterative identification of nonlinear dynamic systems with output backlash using three-block cascade models. Nonlinear Dyn. 79(3), 2187–2195 (2015)

    Article  MathSciNet  Google Scholar 

  15. Halder, A., Bhattacharya, R.: Probabilistic model validation for uncertain nonlinear systems. Automatica 50(8), 2038–2050 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Janczak, A.: Instrumental variables approach to identification of a class of MIMO Wiener systems. Nonlinear Dyn. 48(3), 275–284 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Giri, F., Radouane, A., Brouri, A.: Combined frequency-prediction error identification approach for Wiener systems with backlash and backlash-inverse operators. Automatica 50(3), 768–783 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hu, Y.B., Liu, B.L., et al.: A multi-innovation generalized extended stochastic gradient algorithm for output nonlinear autoregressive moving average systems. Appl. Math. Comput. 247, 218–224 (2014)

    Article  MathSciNet  Google Scholar 

  19. Ramezani, S.: Nonlinear vibration analysis of micro-plates based on strain gradient elasticity theory. Nonlinear Dyn. 73(3), 1399–1421 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, H.B., Ding, F., Xiao, Y.S.: Decomposition-based least squares parameter estimation algorithm for input nonlinear systems using the key term separation technique. Nonlinear Dyn. 79(3), 2027–2035 (2015)

    Article  MATH  Google Scholar 

  21. Wang, D.Q., Liu, H.B., et al.: Highly efficient identification methods for dual-rate Hammerstein systems. IEEE Trans. Control Syst. Tech. 23(5), 1952–1960 (2015)

    Article  Google Scholar 

  22. Wang, C., Tang, T.: Several gradient-based iterative estimation algorithms for a class of nonlinear systems using the filtering technique. Nonlinear Dyn. 77(3), 769–780 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hu, Y.B., Liu, B.L., et al.: Recursive extended least squares parameter estimation for Wiener nonlinear systems with moving average noises. Circuits Syst. Signal Process. 33(2), 655–664 (2014)

    Article  MathSciNet  Google Scholar 

  24. Shi, Y., Fang, H.: Kalman filter based identification for systems with randomly missing measurements in a network environment. Int. J. Control 83(3), 538–551 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, D.Q., Ding, F., Chu, Y.Y.: Data filtering based recursive least squares algorithm for Hammerstein systems using the key-term separation principle. Inf. Sci. 222, 203–212 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, D.Q., Zhang, W.: Improved least squares identification algorithm for multivariable Hammerstein systems. J. Frankl. Inst. Eng. Appl. Math. 352(11), 5292–5370 (2015)

    Article  MathSciNet  Google Scholar 

  27. Huang, J., Shi, Y., et al.: l-2-l-infinity filtering for multirate nonlinear sampled-data systems using T–S fuzzy models. Digit. Signal Process. 23(1), 418–426 (2013)

    Article  MathSciNet  Google Scholar 

  28. Ding, F., Wang, Y.J., Ding, J.: Recursive least squares parameter identification for systems with colored noise using the filtering technique and the auxiliary model. Digit. Signal Process. 37, 100–108 (2015)

    Article  Google Scholar 

  29. Ljung, L.: System Identification: Theory for the User, 2nd edn. Prentice Hall, Englewood Cliffs (1999)

  30. Ding, F.: System Identification—New Theory and Methods. Science Press, Beijing (2013)

    Google Scholar 

  31. Wang, Y.J., Ding, F.: Parameter estimation algorithms for Hammerstein-Wiener systems with autoregressive moving average noise. J. Comput. Nonlinear Dyn. (2016). doi:10.1115/1.4031420

  32. Goodwin, G.C., Sin, K.S.: Adaptive Filtering, Prediction and Control. Prentice-Hall, Englewood Cliffs (1984)

    MATH  Google Scholar 

  33. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  34. Ji, Y., Liu, X.M., et al.: New criteria for the robust impulsive synchronization of uncertain chaotic delayed nonlinear systems. Nonlinear Dyn. 79(1), 1–9 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ji, Y., Liu, X.M.: Unified synchronization criteria for hybrid switching-impulsive dynamical networks. Circuits Syst. Signal Process. 34(5), 1499–1517 (2015)

    Article  MathSciNet  Google Scholar 

  36. Zhu, D.Q., Huang, H., Yang, S.X.: Dynamic task assignment and path planning of multi-AUV system based on an improved self-organizing map and velocity synthesis method in 3D underwater workspace. IEEE Trans. Cybern. 43(2), 504–514 (2013)

    Article  Google Scholar 

  37. Sun, B., Zhu, D.Q., Yang, S.X.: A bio-inspired filtered backstepping cascaded tracking control of 7000m manned submarine vehicle. IEEE Trans. Ind. Electron. 61(7), 3682–3692 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 61273194) and the PAPD of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ding, F. Recursive least squares algorithm and gradient algorithm for Hammerstein–Wiener systems using the data filtering. Nonlinear Dyn 84, 1045–1053 (2016). https://doi.org/10.1007/s11071-015-2548-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2548-5

Keywords

Navigation