Nothing Special   »   [go: up one dir, main page]

Navigation überspringen
Universitätsbibliothek Heidelberg
Verfasst von:Sun, Yimao
 Ho, K. C.
 Wan, Qun
Titel:Solution and Analysis of TDOA Localization of a Near or Distant Source in Closed Form
Verlagsort:New York
Verlag:IEEE
 The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Jahr:2019
Umfang:16 S.
Inhalt:Point positioning and direction of arrival (DOA) localization require separate estimators, depending on whether the source is near or distant from the sensors. The use of modified polar representation (MPR) for the source location enables the integration of the two estimators together and eliminates the knowledge needed if the source is in the near-field or far-field. The previous work on MPR only provides an iterative implementation of the maximum likelihood estimator (MLE) initialized by a coarse semidefinite relaxation (SDR) solution. This paper proposes a formulation for time difference of arrival (TDOA) localization of a 2-D or 3-D source in MPR that would lead to a closed-form solution through the minimization of a quadratic function with a quadratic constraint. Two techniques, the successive unconstrained minimization (SUM) and the generalized trust region subproblem (GTRS), are applied to solve the optimization. Detailed analysis in the first order for mean-square and in the second order for estimation bias is performed for both methods. The theoretical results illustrate that the closed-form solution from each of the methods provides the Cramér-Rao lower bound performance for Gaussian noise. The GTRS solution has better accuracy than the SUM solution when the source signal is arriving at an azimuth or elevation angle close to zero, 90<inline-formula><tex-math notation="LaTeX">^\circ</tex-math></inline-formula>, or 180<inline-formula><tex-math notation="LaTeX">^\circ</tex-math></inline-formula> or when the measurement noise level is large. They yield comparable performance with the MLE albeit having less complexity and avoiding possible divergence behavior. They outperform the closed-form solutions from the literature in angle estimation and have smaller bias.
ISSN:1053-587X
Titel Quelle:IEEE transactions on signal processing
Jahr Quelle:2019
Band/Heft Quelle:67, 2, S. 320-335
DOI:doi:10.1109/TSP.2018.2879622
URL:http://www.ub.uni-heidelberg.de/cgi-bin/edok?dok=https%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F8521706
 http://www.ub.uni-heidelberg.de/cgi-bin/edok?dok=https%3A%2F%2Fwww.proquest.com%2Fdocview%2F2151464716
 DOI: https://doi.org/10.1109/TSP.2018.2879622
Sprache:English
Sach-SW:Bias
 Closed form solutions
 Closed-form solution
 Cramer-Rao bounds
 Direction of arrival
 direction of arrival (DOA)
 Direction-of-arrival estimation
 Divergence
 Economic models
 Elevation angle
 Estimation
 Exact solutions
 Iterative methods
 Localization
 Lower bounds
 Mathematical analysis
 Maximum likelihood estimators
 Minimization
 modified polar representation (MPR)
 Noise measurement
 Optimization
 point positioning
 Quadratic equations
 Random noise
 Sensor arrays
 source localization
 time difference of arrival (TDOA)
Verknüpfungen:→ Sammelwerk


zum Seitenanfang