Let A1, G2, G3, G4……Gn be N geometric Means between two given numbers A and B . Then A, G1, G2 ….. Gn, B will be in Geometric Progression .
So B = (N+2)th term of the Geometric progression.
Then Here R is the common ratio
B = A*RN+1
RN+1 = B/A
R = (B/A)1/(N+1)
Now we have the value of R
And also we have the value of the first term A
G1 = AR1 = A * (B/A)1/(N+1)
G2 = AR2 = A * (B/A)2/(N+1)
G3 = AR3 = A * (B/A)3/(N+1)
2 thoughts on “Insertion of Geometric Mean”