Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/rio/texdis/461.html
   My bibliography  Save this paper

Building Neural Network Models for Time Series: A Statistical Approach

Author

Listed:
  • Marcelo C. Medeiros

    (Department of Economics PUC-Rio)

  • Timo Terasvirta

    (Department of Economic Statistics, Stockholm School of Economics)

  • Gianluigi Rech

    (Quantitative Analysis, Electrabel, Louvain-la-Neuve, Belgium)

Abstract
This paper is concerned with modelling time series by single hidden layer feedforward neural network models. A coherent modelling strategy based on statistical inference is presented. Variable selection is carried out using existing techniques. The problem of selecting the number of hidden units is solved by sequentially applying Lagrange multiplier type tests, with the aim of avoiding the estimation of unidentified models. Misspecification tests are derived for evaluating an estimated neural network model. A small-sample simulation experiment is carried out to show how the proposed modelling strategy works and how the misspecification tests behave in small samples. Two applications to real time series, one univariate and the other multivariate, are considered as well. Sets of one-step-ahead forecasts are constructed and forecast accuracy is compared with that of other nonlinear models applied to the same series.

Suggested Citation

  • Marcelo C. Medeiros & Timo Terasvirta & Gianluigi Rech, 2002. "Building Neural Network Models for Time Series: A Statistical Approach," Textos para discussão 461, Department of Economics PUC-Rio (Brazil).
  • Handle: RePEc:rio:texdis:461
    as

    Download full text from publisher

    File URL: http://www.econ.puc-rio.br/uploads/adm/trabalhos/files/td461.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Krolzig, Hans-Martin & Hendry, David F., 2001. "Computer automation of general-to-specific model selection procedures," Journal of Economic Dynamics and Control, Elsevier, vol. 25(6-7), pages 831-866, June.
    2. Eitrheim, Oyvind & Terasvirta, Timo, 1996. "Testing the adequacy of smooth transition autoregressive models," Journal of Econometrics, Elsevier, vol. 74(1), pages 59-75, September.
    3. Yao, Qiwei & Tong, Howell, 1994. "On subset selection in non-parametric stochastic regression," LSE Research Online Documents on Economics 6409, London School of Economics and Political Science, LSE Library.
    4. Rong Chen, 1995. "Threshold Variable Selection In Open‐Loop Threshold Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(5), pages 461-481, September.
    5. Terasvirta, Timo & van Dijk, Dick & Medeiros, Marcelo C., 2005. "Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination," International Journal of Forecasting, Elsevier, vol. 21(4), pages 755-774.
    6. Norman R. Swanson & Halbert White, 1997. "A Model Selection Approach To Real-Time Macroeconomic Forecasting Using Linear Models And Artificial Neural Networks," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 540-550, November.
    7. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    8. Racine, Jeffrey, 2001. "On the Nonlinear Predictability of Stock Returns Using Financial and Economic Variables," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 380-382, July.
    9. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    10. Rech, Gianluigi & Teräsvirta, Timo & Tschernig, Rolf, 1999. "A simple variable selection technique for nonlinear models," SFB 373 Discussion Papers 1999,26, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    11. Balkin, Sandy D. & Ord, J. Keith, 2000. "Automatic neural network modeling for univariate time series," International Journal of Forecasting, Elsevier, vol. 16(4), pages 509-515.
    12. Fama, Eugene F., 1998. "Market efficiency, long-term returns, and behavioral finance," Journal of Financial Economics, Elsevier, vol. 49(3), pages 283-306, September.
    13. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    14. Swanson, Norman R. & White, Halbert, 1997. "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 439-461, December.
    15. Lee, Tae-Hwy & White, Halbert & Granger, Clive W. J., 1993. "Testing for neglected nonlinearity in time series models : A comparison of neural network methods and alternative tests," Journal of Econometrics, Elsevier, vol. 56(3), pages 269-290, April.
    16. Timo Teräsvirta & Chien‐Fu Lin & Clive W. J. Granger, 1993. "Power Of The Neural Network Linearity Test," Journal of Time Series Analysis, Wiley Blackwell, vol. 14(2), pages 209-220, March.
    17. Teräsvirta, Timo, 1996. "Smooth Transition Models," SSE/EFI Working Paper Series in Economics and Finance 132, Stockholm School of Economics.
    18. Rolf Tschernig & Lijian Yang, 2000. "Nonparametric Lag Selection for Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(4), pages 457-487, July.
    19. Qi, Min, 1999. "Nonlinear Predictability of Stock Returns Using Financial and Economic Variables," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(4), pages 419-429, October.
    20. Pesaran, M Hashem & Timmermann, Allan, 1995. "Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-1228, September.
    21. Wooldridge, Jeffrey M., 1990. "A Unified Approach to Robust, Regression-Based Specification Tests," Econometric Theory, Cambridge University Press, vol. 6(1), pages 17-43, March.
    22. Rech, Gianluigi, 2002. "Forecasting with artificial neural network models," SSE/EFI Working Paper Series in Economics and Finance 491, Stockholm School of Economics.
    23. Stephen Leybourne & Paul Newbold & Dimitrios Vougas, 1998. "Unit roots and smooth transitions," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(1), pages 83-97, January.
    24. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    25. Swanson, Norman R & White, Halbert, 1995. "A Model-Selection Approach to Assessing the Information in the Term Structure Using Linear Models and Artificial Neural Networks," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 265-275, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    2. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    3. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    4. Terasvirta, Timo & van Dijk, Dick & Medeiros, Marcelo C., 2005. "Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination," International Journal of Forecasting, Elsevier, vol. 21(4), pages 755-774.
    5. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    6. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
    7. Qi, Min & Yang, Sha, 2003. "Forecasting consumer credit card adoption: what can we learn about the utility function?," International Journal of Forecasting, Elsevier, vol. 19(1), pages 71-85.
    8. Anders Bredahl Kock & Timo Teräsvirta, 2010. "Forecasting with nonlinear time series models," CREATES Research Papers 2010-01, Department of Economics and Business Economics, Aarhus University.
    9. Corradi, Valentina & Swanson, Norman R., 2004. "Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives," International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
    10. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    11. Emilio Zanetti Chini, 2013. "Generalizing smooth transition autoregressions," CREATES Research Papers 2013-32, Department of Economics and Business Economics, Aarhus University.
    12. Kock, Anders Bredahl & Teräsvirta, Timo, 2014. "Forecasting performances of three automated modelling techniques during the economic crisis 2007–2009," International Journal of Forecasting, Elsevier, vol. 30(3), pages 616-631.
    13. Philip Rothman & Dick van Dijk & Philip Hans Franses, 1999. "A Multivariate STAR Analysis of the Relationship Between Money and Output," Working Papers 9913, East Carolina University, Department of Economics.
    14. Milena Hoyos & Mario Galindo, 2011. "Comparación de los modelos SETAR y STAR para el índice de empleo industrial colombiano," Documentos de Trabajo, Escuela de Economía 8347, Universidad Nacional de Colombia, FCE, CID.
    15. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
    16. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, October.
    17. Scharth, Marcel & Medeiros, Marcelo C., 2009. "Asymmetric effects and long memory in the volatility of Dow Jones stocks," International Journal of Forecasting, Elsevier, vol. 25(2), pages 304-327.
    18. Mayte Suarez -Farinas & Carlos E. Pedreira & Marcelo C. Medeiros, 2004. "Local Global Neural Networks: A New Approach for Nonlinear Time Series Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1092-1107, December.
    19. Corradi, Valentina & Swanson, Norman R., 2002. "A consistent test for nonlinear out of sample predictive accuracy," Journal of Econometrics, Elsevier, vol. 110(2), pages 353-381, October.
    20. Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002. "Smooth Transition Autoregressive Models — A Survey Of Recent Developments," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rio:texdis:461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/dpucrbr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.