Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/30902.html
   My bibliography  Save this paper

A Note on institutional hierarchy and volatility in financial markets

Author

Listed:
  • Alfarano, Simone
  • Milakovic, Mishael
  • Raddant, Matthias
Abstract
From a statistical point of view, the prevalence of non-Gaussian distributions in nancial returns and their volatilities shows that the Central Limit Theorem (CLT) often does not apply in nancial markets. In this paper we take the position that the independence assumption of the CLT is violated by herding tendencies among market participants, and investigate whether a generic probabilistic herding model can reproduce non-Gaussian statistics in systems with a large number of agents. It is well-known that the presence of a herding mechanism in the model is not sucient for non-Gaussian properties, which crucially depend on the details of the communication network among agents. The main contribution of this paper is to show that certain hierarchical networks, which portray the institutional structure of fund investment, warrant non-Gaussian properties for any system size and even lead to an increase in system-wide volatility. Viewed from this perspective, the mere existence of nancial institutions with socially interacting managers contributes considerably to nancial volatility.

Suggested Citation

  • Alfarano, Simone & Milakovic, Mishael & Raddant, Matthias, 2011. "A Note on institutional hierarchy and volatility in financial markets," MPRA Paper 30902, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:30902
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/30902/1/MPRA_paper_30902.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Aoki, Masanao, 2008. "Thermodynamic limits of macroeconomic or financial models: One- and two-parameter Poisson-Dirichlet models," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 66-84, January.
    2. Iori, Giulia, 2002. "A microsimulation of traders activity in the stock market: the role of heterogeneity, agents' interactions and trade frictions," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 269-285, October.
    3. Russ Wermers, 1999. "Mutual Fund Herding and the Impact on Stock Prices," Journal of Finance, American Finance Association, vol. 54(2), pages 581-622, April.
    4. Alfarano, Simone & Lux, Thomas, 2007. "A Noise Trader Model As A Generator Of Apparent Financial Power Laws And Long Memory," Macroeconomic Dynamics, Cambridge University Press, vol. 11(S1), pages 80-101, November.
    5. William A. Brock & Cars H. Hommes, 1997. "A Rational Route to Randomness," Econometrica, Econometric Society, vol. 65(5), pages 1059-1096, September.
    6. Lux, Thomas & Schornstein, Sascha, 2005. "Genetic learning as an explanation of stylized facts of foreign exchange markets," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 169-196, February.
    7. V. Alfi & M. Cristelli & L. Pietronero & A. Zaccaria, 2009. "Minimal agent based model for financial markets I," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 67(3), pages 385-397, February.
    8. Harrison Hong & Jeffrey D. Kubik & Jeremy C. Stein, 2005. "Thy Neighbor's Portfolio: Word‐of‐Mouth Effects in the Holdings and Trades of Money Managers," Journal of Finance, American Finance Association, vol. 60(6), pages 2801-2824, December.
    9. Albrecht Irle & Jonas Kauschke & Thomas Lux & Mishael Milaković, 2011. "Switching Rates And The Asymptotic Behavior Of Herding Models," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 14(03), pages 359-376.
    10. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    11. Stefan Bornholdt, 2001. "Expectation Bubbles In A Spin Model Of Markets: Intermittency From Frustration Across Scales," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 12(05), pages 667-674.
    12. Abhijit V. Banerjee, 1992. "A Simple Model of Herd Behavior," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(3), pages 797-817.
    13. Simone Alfarano & Thomas Lux & Friedrich Wagner, 2005. "Estimation of Agent-Based Models: The Case of an Asymmetric Herding Model," Computational Economics, Springer;Society for Computational Economics, vol. 26(1), pages 19-49, August.
    14. Alfarano, Simone & Milakovic, Mishael, 2009. "Network structure and N-dependence in agent-based herding models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 78-92, January.
    15. Harrison Hong & Jeffrey D. Kubik & Jeremy C. Stein, 2003. "The Neighbor's Portfolio: Word-of-Mouth Effects in the Holdings and Trade of Money Managers," NBER Working Papers 9711, National Bureau of Economic Research, Inc.
    16. Egenter, E. & Lux, T. & Stauffer, D., 1999. "Finite-size effects in Monte Carlo simulations of two stock market models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 268(1), pages 250-256.
    17. William A. Brock & Cars H. Hommes, 2001. "A Rational Route to Randomness," Chapters, in: W. D. Dechert (ed.), Growth Theory, Nonlinear Dynamics and Economic Modelling, chapter 16, pages 402-438, Edward Elgar Publishing.
    18. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    19. Alan Kirman, 1993. "Ants, Rationality, and Recruitment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(1), pages 137-156.
    20. Alfarano, Simone & Lux, Thomas & Wagner, Friedrich, 2008. "Time variation of higher moments in a financial market with heterogeneous agents: An analytical approach," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 101-136, January.
    21. Chang, Sheng-Kai, 2007. "A simple asset pricing model with social interactions and heterogeneous beliefs," Journal of Economic Dynamics and Control, Elsevier, vol. 31(4), pages 1300-1325, April.
    22. Leigh Tesfatsion & Kenneth L. Judd (ed.), 2006. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 2, number 2.
    23. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    24. Xavier Gabaix & Parameswaran Gopikrishnan & Vasiliki Plerou & H. Eugene Stanley, 2003. "A theory of power-law distributions in financial market fluctuations," Nature, Nature, vol. 423(6937), pages 267-270, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adri'an Carro & Ra'ul Toral & Maxi San Miguel, 2015. "Markets, herding and response to external information," Papers 1506.03708, arXiv.org, revised Jun 2015.
    2. Gonzalo Bohorquez & John Cartlidge, 2024. "Simulation of Social Media-Driven Bubble Formation in Financial Markets using an Agent-Based Model with Hierarchical Influence Network," Papers 2409.00742, arXiv.org.
    3. Kononovicius, A. & Gontis, V., 2014. "Control of the socio-economic systems using herding interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 80-84.
    4. Matthias Raddant & Mishael Milaković & Laura Birg, 2017. "Persistence in corporate networks," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(2), pages 249-276, July.
    5. David Vidal-Tomás & Simone Alfarano, 2020. "An agent-based early warning indicator for financial market instability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(1), pages 49-87, January.
    6. Adrián Carro & Raúl Toral & Maxi San Miguel, 2015. "Markets, Herding and Response to External Information," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-28, July.
    7. Aleksejus Kononovicius & Vygintas Gontis, 2014. "Herding interactions as an opportunity to prevent extreme events in financial markets," Papers 1409.8024, arXiv.org, revised May 2015.
    8. Junhuan Zhang & Peter McBurney & Katarzyna Musial, 2018. "Convergence of trading strategies in continuous double auction markets with boundedly-rational networked traders," Review of Quantitative Finance and Accounting, Springer, vol. 50(1), pages 301-352, January.
    9. Adri'an Carro & Ra'ul Toral & Maxi San Miguel, 2016. "The noisy voter model on complex networks," Papers 1602.06935, arXiv.org, revised Apr 2016.
    10. Adri'an Carro & Ra'ul Toral & Maxi San Miguel, 2013. "Signal amplification in an agent-based herding model," Papers 1302.6477, arXiv.org, revised Sep 2015.
    11. Zhang, Junhuan, 2018. "Influence of individual rationality on continuous double auction markets with networked traders," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 353-392.
    12. Aleksejus Kononovicius, 2017. "Empirical Analysis and Agent-Based Modeling of the Lithuanian Parliamentary Elections," Complexity, Hindawi, vol. 2017, pages 1-15, November.
    13. Song-min Yu & Lei Zhu, 2017. "Impact of Firms’ Observation Network on the Carbon Market," Energies, MDPI, vol. 10(8), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
    2. Alfarano, Simone & Milakovic, Mishael, 2009. "Network structure and N-dependence in agent-based herding models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 78-92, January.
    3. Adri'an Carro & Ra'ul Toral & Maxi San Miguel, 2015. "Markets, herding and response to external information," Papers 1506.03708, arXiv.org, revised Jun 2015.
    4. Adrián Carro & Raúl Toral & Maxi San Miguel, 2015. "Markets, Herding and Response to External Information," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-28, July.
    5. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    6. Carl Chiarella & Roberto Dieci & Xue-Zhong He, 2008. "Heterogeneity, Market Mechanisms, and Asset Price Dynamics," Research Paper Series 231, Quantitative Finance Research Centre, University of Technology, Sydney.
    7. Lux, Thomas, 2008. "Stochastic behavioral asset pricing models and the stylized facts," Kiel Working Papers 1426, Kiel Institute for the World Economy (IfW Kiel).
    8. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    9. Lux, Thomas, 2008. "Stochastic behavioral asset pricing models and the stylized facts," Economics Working Papers 2008-08, Christian-Albrechts-University of Kiel, Department of Economics.
    10. Blaurock, Ivonne & Schmitt, Noemi & Westerhoff, Frank, 2018. "Market entry waves and volatility outbursts in stock markets," Journal of Economic Behavior & Organization, Elsevier, vol. 153(C), pages 19-37.
    11. Alfarano, Simone & Milaković, Mishael & Raddant, Matthias, 2009. "Network hierarchy in Kirman's ant model: fund investment can create systemic risk," Economics Working Papers 2009-09, Christian-Albrechts-University of Kiel, Department of Economics.
    12. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    13. Torsten Trimborn & Philipp Otte & Simon Cramer & Max Beikirch & Emma Pabich & Martin Frank, 2018. "SABCEMM-A Simulator for Agent-Based Computational Economic Market Models," Papers 1801.01811, arXiv.org, revised Oct 2018.
    14. Cars Hommes & Florian Wagener, 2008. "Complex Evolutionary Systems in Behavioral Finance," Tinbergen Institute Discussion Papers 08-054/1, Tinbergen Institute.
    15. He, Xue-Zhong & Li, Youwei, 2015. "Testing of a market fraction model and power-law behaviour in the DAX 30," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 1-17.
    16. Kai Li, 2014. "Asset Price Dynamics with Heterogeneous Beliefs and Time Delays," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 13, July-Dece.
    17. Albrecht Irle & Jonas Kauschke & Thomas Lux & Mishael Milaković, 2011. "Switching Rates And The Asymptotic Behavior Of Herding Models," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 14(03), pages 359-376.
    18. David Vidal-Tomás & Simone Alfarano, 2020. "An agent-based early warning indicator for financial market instability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(1), pages 49-87, January.
    19. Daniele Giachini, 2018. "Rationality and Asset Prices under Belief Heterogeneity," LEM Papers Series 2018/07, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    20. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.

    More about this item

    Keywords

    Herding; financial volatility; networks; core-perifery;
    All these keywords.

    JEL classification:

    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
    • E19 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Other
    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:30902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.