Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2015-9.html
   My bibliography  Save this paper

A Varying-Coefficient Panel Data Model with Fixed Effects: Theory and an Application to U.S. Commercial Banks

Author

Listed:
  • Guohua Feng
  • Jiti Gao
  • Bin Peng
  • Xiaohui Zhang
Abstract
In this paper, we propose a panel data semiparametric varying-coefficient model in which covariates (variables affecting the coefficients) are purely categorical. This model has two features: first, fixed effects are included to allow for correlation between individual unobserved heterogeneity and the regressors; second, it allows for cross-sectional dependence through a general spatial error dependence structure. We derive a semiparametric estimator for our model by using a modified within transformation, and then show the asymptotic and finite properties for this estimator. Finally, we illustrate our model by analysing the effects of state-level banking regulations on the returns to scale of commercial banks in the U.S. Our empirical results suggest that returns to scale is higher in more regulated states than in less regulated states.

Suggested Citation

  • Guohua Feng & Jiti Gao & Bin Peng & Xiaohui Zhang, 2015. "A Varying-Coefficient Panel Data Model with Fixed Effects: Theory and an Application to U.S. Commercial Banks," Monash Econometrics and Business Statistics Working Papers 9/15, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2015-9
    as

    Download full text from publisher

    File URL: http://business.monash.edu/econometrics-and-business-statistics/research/publications/ebs/wp09-15.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. QI Li & Desheng Ouyang & Jeffrey S. Racine, 2013. "Categorical semiparametric varying‐coefficient models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(4), pages 551-579, June.
    2. Peter Hall & Qi Li & Jeffrey S. Racine, 2007. "Nonparametric Estimation of Regression Functions in the Presence of Irrelevant Regressors," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 784-789, November.
    3. Feng, Guohua & Serletis, Apostolos, 2010. "Efficiency, technical change, and returns to scale in large US banks: Panel data evidence from an output distance function satisfying theoretical regularity," Journal of Banking & Finance, Elsevier, vol. 34(1), pages 127-138, January.
    4. Dong, Chaohua & Gao, Jiti & Peng, Bin, 2015. "Semiparametric single-index panel data models with cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 188(1), pages 301-312.
    5. Liangjun Su & Zhentao Shi & Peter C. B. Phillips, 2016. "Identifying Latent Structures in Panel Data," Econometrica, Econometric Society, vol. 84, pages 2215-2264, November.
    6. David C. Wheelock & Paul W. Wilson, 2012. "Do Large Banks Have Lower Costs? New Estimates of Returns to Scale for U.S. Banks," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(1), pages 171-199, February.
    7. Kock, Anders Bredahl, 2013. "Oracle Efficient Variable Selection In Random And Fixed Effects Panel Data Models," Econometric Theory, Cambridge University Press, vol. 29(1), pages 115-152, February.
    8. Diewert, Walter E & Wales, Terence J, 1987. "Flexible Functional Forms and Global Curvature Conditions," Econometrica, Econometric Society, vol. 55(1), pages 43-68, January.
    9. Cai, Zongwu, 2007. "Trending time-varying coefficient time series models with serially correlated errors," Journal of Econometrics, Elsevier, vol. 136(1), pages 163-188, January.
    10. Peter Robinson, 2011. "Asymptotic theory for nonparametric regression with spatial data," CeMMAP working papers CWP11/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Cai, Zongwu & Li, Qi, 2008. "Nonparametric Estimation Of Varying Coefficient Dynamic Panel Data Models," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1321-1342, October.
    12. Pesaran, M. Hashem & Tosetti, Elisa, 2011. "Large panels with common factors and spatial correlation," Journal of Econometrics, Elsevier, vol. 161(2), pages 182-202, April.
    13. Cai, Zongwu & Li, Qi & Park, Joon Y., 2009. "Functional-coefficient models for nonstationary time series data," Journal of Econometrics, Elsevier, vol. 148(2), pages 101-113, February.
    14. Chen, Jia & Gao, Jiti & Li, Degui, 2012. "Semiparametric trending panel data models with cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 171(1), pages 71-85.
    15. Donald W. K. Andrews, 2005. "Cross-Section Regression with Common Shocks," Econometrica, Econometric Society, vol. 73(5), pages 1551-1585, September.
    16. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    17. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    18. Wang, Hansheng & Xia, Yingcun, 2009. "Shrinkage Estimation of the Varying Coefficient Model," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 747-757.
    19. Feng, Guohua & Zhang, Xiaohui, 2012. "Productivity and efficiency at large and community banks in the US: A Bayesian true random effects stochastic distance frontier analysis," Journal of Banking & Finance, Elsevier, vol. 36(7), pages 1883-1895.
    20. Griffiths, William E. & O'Donnell, Christopher J. & Cruz, Agustina Tan, 2000. "Imposing regularity conditions on a system of cost and factor share equations," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 44(1), pages 1-21.
    21. Lee, Jungyoon & Robinson, Peter M., 2016. "Series estimation under cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 190(1), pages 1-17.
    22. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    23. Sealey, Calvin W, Jr & Lindley, James T, 1977. "Inputs, Outputs, and a Theory of Production and Cost at Depository Financial Institutions," Journal of Finance, American Finance Association, vol. 32(4), pages 1251-1266, September.
    24. Loretta J. Mester, 2005. "Optimal industrial structure in banking," Working Papers 08-2, Federal Reserve Bank of Philadelphia.
    25. Robinson, P.M., 2011. "Asymptotic theory for nonparametric regression with spatial data," Journal of Econometrics, Elsevier, vol. 165(1), pages 5-19.
    26. Christensen, Laurits R & Jorgenson, Dale W & Lau, Lawrence J, 1975. "Transcendental Logarithmic Utility Functions," American Economic Review, American Economic Association, vol. 65(3), pages 367-383, June.
    27. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    28. Feng, Guohua & Serletis, Apostolos, 2008. "Productivity trends in U.S. manufacturing: Evidence from the NQ and AIM cost functions," Journal of Econometrics, Elsevier, vol. 142(1), pages 281-311, January.
    29. Juan M. Rodriguez‐Poo & Alexandra Soberon, 2014. "Direct semi‐parametric estimation of fixed effects panel data varying coefficient models," Econometrics Journal, Royal Economic Society, vol. 17(1), pages 107-138, February.
    30. Jia Chen & Jiti Gao & Degui Li, 2013. "Estimation in Partially Linear Single-Index Panel Data Models With Fixed Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 315-330, July.
    31. Li, Qi, et al, 2002. "Semiparametric Smooth Coefficient Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 412-422, July.
    32. Li, Qi & Racine, Jeffrey S., 2010. "Smooth Varying-Coefficient Estimation And Inference For Qualitative And Quantitative Data," Econometric Theory, Cambridge University Press, vol. 26(6), pages 1607-1637, December.
    33. Su, Liangjun & Jin, Sainan, 2012. "Sieve estimation of panel data models with cross section dependence," Journal of Econometrics, Elsevier, vol. 169(1), pages 34-47.
    34. Chen, Jia & Gao, Jiti & Li, Degui, 2012. "A New Diagnostic Test For Cross-Section Uncorrelatedness In Nonparametric Panel Data Models," Econometric Theory, Cambridge University Press, vol. 28(5), pages 1144-1163, October.
    35. Gao, Jiti & Phillips, Peter C.B., 2013. "Semiparametric estimation in triangular system equations with nonstationarity," Journal of Econometrics, Elsevier, vol. 176(1), pages 59-79.
    36. Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, September.
    37. repec:hal:journl:peer-00796743 is not listed on IDEAS
    38. Jungyoon Lee & Peter Robinson, 2016. "Series estimation under cross-sectional dependence," LSE Research Online Documents on Economics 63380, London School of Economics and Political Science, LSE Library.
    39. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    40. Jith Jayaratne & Philip E. Strahan, 1997. "The benefits of branching deregulation," Economic Policy Review, Federal Reserve Bank of New York, vol. 3(Dec), pages 13-29.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Peng & Liangjun Su & Joakim Westerlund & Yanrong Yang, 2021. "Interactive Effects Panel Data Models with General Factors and Regressors," Monash Econometrics and Business Statistics Working Papers 23/21, Monash University, Department of Econometrics and Business Statistics.
    2. Casas Villalba, Maria Isabel, 2020. "Adaptative predictability of stock market returns," DES - Working Papers. Statistics and Econometrics. WS 31648, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Feng, Guohua & McLaren, Keith R. & Yang, Ou & Zhang, Xiaohui & Zhao, Xueyan, 2021. "The impact of environmental policy stringency on industrial productivity growth: A semi-parametric study of OECD countries," Energy Economics, Elsevier, vol. 100(C).
    4. Arteaga-Molina, Luis A. & Rodríguez-Poo, Juan M., 2019. "Empirical likelihood based inference for a categorical varying-coefficient panel data model with fixed effects," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 110-124.
    5. Lixiong Yang & Chingnun Lee & I‐Po Chen, 2021. "Threshold model with a time‐varying threshold based on Fourier approximation," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 406-430, July.
    6. Price, Sarah & Zhang, Xiaohui & Spencer, Anne, 2020. "Measuring the impact of national guidelines: What methods can be used to uncover time-varying effects for healthcare evaluations?," Social Science & Medicine, Elsevier, vol. 258(C).
    7. Emawtee Bissoondoyal‐Bheenick & Robert Brooks & Hung Xuan Do, 2023. "Risk Analysis of Pension Fund Investment Choices," Abacus, Accounting Foundation, University of Sydney, vol. 59(3), pages 872-898, September.
    8. Dong, Hao & Otsu, Taisuke & Taylor, Luke, 2022. "Estimation of varying coefficient models with measurement error," Journal of Econometrics, Elsevier, vol. 230(2), pages 388-415.
    9. Feng, Guohua & Gao, Jiti & Peng, Bin, 2022. "An integrated panel data approach to modelling economic growth," Journal of Econometrics, Elsevier, vol. 228(2), pages 379-397.
    10. Simon Freyaldenhoven & Christian Hansen & Jorge Perez Perez & Jesse Shapiro, 2021. "Visualization, Identification, and stimation in the Linear Panel Event-Study Design," Working Papers 21-44, Federal Reserve Bank of Philadelphia.
    11. Heather Anderson & Jiti Gao & Farshid Vahid & Wei Wei & Yang Yang, 2023. "Does Climate Sensitivity Differ Across Regions?," Monash Econometrics and Business Statistics Working Papers 7/23, Monash University, Department of Econometrics and Business Statistics.
    12. Phillips, Peter C.B. & Wang, Ying, 2022. "Functional coefficient panel modeling with communal smoothing covariates," Journal of Econometrics, Elsevier, vol. 227(2), pages 371-407.
    13. Dong, Jichang & Yin, Lijun & Liu, Xiaoting & Hu, Meiting & Li, Xiuting & Liu, Lei, 2020. "Impact of internet finance on the performance of commercial banks in China," International Review of Financial Analysis, Elsevier, vol. 72(C).
    14. Chaohua Dong & Jiti Gao & Bin Peng, 2018. "Varying-coefficient panel data models with partially observed factor structure," Monash Econometrics and Business Statistics Working Papers 1/18, Monash University, Department of Econometrics and Business Statistics.
    15. Hao, Xiaoli & Deng, Feng, 2019. "The marginal and double threshold effects of regional innovation on energy consumption structure: Evidence from resource-based regions in China," Energy Policy, Elsevier, vol. 131(C), pages 144-154.
    16. Chen, Qian & Zha, Donglan & Wang, Lijun & Yang, Guanglei, 2022. "The direct CO2 rebound effect in households: Evidence from China's provinces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    17. Cheng, Ming-Yen & Wang, Shouxia & Xia, Lucy & Zhang, Xibin, 2024. "Testing specification of distribution in stochastic frontier analysis," Journal of Econometrics, Elsevier, vol. 239(2).
    18. Hua Liu & Youquan Pei & Qunfang Xu, 2020. "Estimation for varying coefficient panel data model with cross-sectional dependence," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(3), pages 377-410, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaohua Dong & Jiti Gao & Bin Peng, 2018. "Varying-coefficient panel data models with partially observed factor structure," Monash Econometrics and Business Statistics Working Papers 1/18, Monash University, Department of Econometrics and Business Statistics.
    2. Arteaga-Molina, Luis A. & Rodríguez-Poo, Juan M., 2019. "Empirical likelihood based inference for a categorical varying-coefficient panel data model with fixed effects," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 110-124.
    3. Fei Liu & Jiti Gao & Yanrong Yang, 2020. "Time-Varying Panel Data Models with an Additive Factor Structure," Monash Econometrics and Business Statistics Working Papers 42/20, Monash University, Department of Econometrics and Business Statistics.
    4. Dong, Chaohua & Gao, Jiti & Peng, Bin, 2015. "Semiparametric single-index panel data models with cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 188(1), pages 301-312.
    5. Eduardo A. Souza-Rodrigues, 2016. "Nonparametric Regression with Common Shocks," Econometrics, MDPI, vol. 4(3), pages 1-17, September.
    6. Henderson, Daniel J. & Kumbhakar, Subal C. & Li, Qi & Parmeter, Christopher F., 2015. "Smooth coefficient estimation of a seemingly unrelated regression," Journal of Econometrics, Elsevier, vol. 189(1), pages 148-162.
    7. Feng, Guohua & Peng, Bin & Su, Liangjun & Yang, Thomas Tao, 2019. "Semi-parametric single-index panel data models with interactive fixed effects: Theory and practice," Journal of Econometrics, Elsevier, vol. 212(2), pages 607-622.
    8. Peng, Bin, 2016. "Inference on modelling cross-sectional dependence for a varying-coefficient model," Economics Letters, Elsevier, vol. 145(C), pages 1-5.
    9. Fei Liu & Jiti Gao & Yanrong Yang, 2019. "Nonparametric Estimation in Panel Data Models with Heterogeneity and Time Varyingness," Monash Econometrics and Business Statistics Working Papers 24/19, Monash University, Department of Econometrics and Business Statistics.
    10. Lu, Xun & Su, Liangjun, 2016. "Shrinkage estimation of dynamic panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 190(1), pages 148-175.
    11. Chaohua Dong & Jiti Gao & Bin Peng, 2015. "Partially Linear Panel Data Models with Cross-Sectional Dependence and Nonstationarity," Monash Econometrics and Business Statistics Working Papers 7/15, Monash University, Department of Econometrics and Business Statistics.
    12. Jiti Gao & Kai Xia, 2017. "Heterogeneous panel data models with cross-sectional dependence," Monash Econometrics and Business Statistics Working Papers 16/17, Monash University, Department of Econometrics and Business Statistics.
    13. Diego Restrepo-Tobón & Subal Kumbhakar & Kai Sun, 2015. "Obelix vs. Asterix: Size of US commercial banks and its regulatory challenge," Journal of Regulatory Economics, Springer, vol. 48(2), pages 125-168, October.
    14. Feng, Guohua & Gao, Jiti & Peng, Bin, 2022. "An integrated panel data approach to modelling economic growth," Journal of Econometrics, Elsevier, vol. 228(2), pages 379-397.
    15. Jia Chen & Degui Li & Jiti Gao, 2013. "Non- and Semi-Parametric Panel Data Models: A Selective Review," Monash Econometrics and Business Statistics Working Papers 18/13, Monash University, Department of Econometrics and Business Statistics.
    16. Jiang, Bin & Yang, Yanrong & Gao, Jiti & Hsiao, Cheng, 2021. "Recursive estimation in large panel data models: Theory and practice," Journal of Econometrics, Elsevier, vol. 224(2), pages 439-465.
    17. Guohua Feng & Jiti Gao & Xiaohui Zhang, 2018. "Estimation of technical change and price elasticities: a categorical time–varying coefficient approach," Journal of Productivity Analysis, Springer, vol. 50(3), pages 117-138, December.
    18. Gao, Jiti & Xia, Kai & Zhu, Huanjun, 2020. "Heterogeneous panel data models with cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 219(2), pages 329-353.
    19. Lu, Xun & Su, Liangjun, 2020. "Determining individual or time effects in panel data models," Journal of Econometrics, Elsevier, vol. 215(1), pages 60-83.
    20. Gao, Jiti & Linton, Oliver & Peng, Bin, 2020. "Inference On A Semiparametric Model With Global Power Law And Local Nonparametric Trends," Econometric Theory, Cambridge University Press, vol. 36(2), pages 223-249, April.

    More about this item

    Keywords

    Categorial variable; estimation theory; nonlinear panel data model; returns to scale.;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2015-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.