Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/32-07.html
   My bibliography  Save this paper

Unconditional quantile treatment effects under endogeneity

Author

Listed:
  • Markus Frölich

    (Institute for Fiscal Studies)

  • Blaise Melly

    (Institute for Fiscal Studies)

Abstract
This paper develops IV estimators for unconditional quantile treatment effects (QTE) when the treatment selection is endogenous. In contrast to conditional QTE, i.e. the effects conditional on a large number of covariates X, the unconditional QTE summarize the effects of a treatment for the entire population. They are usually of most interest in policy evaluations because the results can easily be conveyed and summarized. Last but not least, unconditional QTE can be estimated at pn rate without any parametric assumption, which is obviously impossible for conditional QTE (unless all X are discrete). In this paper we extend the Identification of unconditional QTE to endogenous treatments. Identification is based on a monotonicity assumption in the treatment choice equation and is achieved without any functional form restriction. Several types of estimators are proposed: regression, propensity score and weighting estimators. Root n consistency, asymptotic normality and attainment of the semiparametric efficiency bound are shown for our weighting estimator, which is extremely simple to implement. We also show that including covariates in the estimation is not only necessary for consistency when the instrumental variable is itself confounded but also for efficiency when the instrument is valid unconditionally. Monte Carlo simulations and two empirical applications illustrate the use of the proposed estimators.

Suggested Citation

  • Markus Frölich & Blaise Melly, 2007. "Unconditional quantile treatment effects under endogeneity," CeMMAP working papers CWP32/07, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:32/07
    as

    Download full text from publisher

    File URL: http://cemmap.ifs.org.uk/wps/cwp3207.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Frolich, Markus, 2007. "Nonparametric IV estimation of local average treatment effects with covariates," Journal of Econometrics, Elsevier, vol. 139(1), pages 35-75, July.
    2. Andrew Chesher, 2005. "Nonparametric Identification under Discrete Variation," Econometrica, Econometric Society, vol. 73(5), pages 1525-1550, September.
    3. Markus Frölich, 2006. "A Note on Parametric and Nonparametric Regression in the Presence of Endogenous Control Variables," University of St. Gallen Department of Economics working paper series 2006 2006-11, Department of Economics, University of St. Gallen.
    4. Chernozhukov, Victor & Hansen, Christian, 2006. "Instrumental quantile regression inference for structural and treatment effect models," Journal of Econometrics, Elsevier, vol. 132(2), pages 491-525, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frölich, Markus & Lechner, Michael, 2010. "Exploiting Regional Treatment Intensity for the Evaluation of Labor Market Policies," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1014-1029.
    2. Jia-Young Michael Fu & Joel L. Horowitz & Matthias Parey, 2015. "Testing exogeneity in nonparametric instrumental variables identified by conditional quantile restrictions," CeMMAP working papers 68/15, Institute for Fiscal Studies.
    3. Rietveld, Cornelius A. & Webbink, Dinand, 2016. "On the genetic bias of the quarter of birth instrument," Economics & Human Biology, Elsevier, vol. 21(C), pages 137-146.
    4. Pereda-Fernández, Santiago, 2023. "Identification and estimation of triangular models with a binary treatment," Journal of Econometrics, Elsevier, vol. 234(2), pages 585-623.
    5. Victor Chernozhukov & Christian Hansen & Kaspar Wuthrich, 2020. "Instrumental Variable Quantile Regression," Papers 2009.00436, arXiv.org.
    6. Lee, Sokbae, 2007. "Endogeneity in quantile regression models: A control function approach," Journal of Econometrics, Elsevier, vol. 141(2), pages 1131-1158, December.
    7. Horowitz, Joel L. & Lee, Sokbae, 2009. "Testing a parametric quantile-regression model with an endogenous explanatory variable against a nonparametric alternative," Journal of Econometrics, Elsevier, vol. 152(2), pages 141-152, October.
    8. Brunello, Giorgio & Fabbri, Daniele & Fort, Margherita, 2009. "Years of Schooling, Human Capital and the Body Mass Index of European Females," IZA Discussion Papers 4667, Institute of Labor Economics (IZA).
    9. Ozkan Eren & Serkan Ozbeklik, 2014. "Who Benefits From Job Corps? A Distributional Analysis Of An Active Labor Market Program," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(4), pages 586-611, June.
    10. Kasey S. Buckles & Daniel M. Hungerman, 2013. "Season of Birth and Later Outcomes: Old Questions, New Answers," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 711-724, July.
    11. Jun, Sung Jae, 2009. "Local structural quantile effects in a model with a nonseparable control variable," Journal of Econometrics, Elsevier, vol. 151(1), pages 82-97, July.
    12. Fusejima, Koki, 2024. "Identification of multi-valued treatment effects with unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 238(1).
    13. Tamini, Lota D., 2009. "Agri-Environment Advisory Activities Effects on Best Management Practices Adoption," MPRA Paper 18961, University Library of Munich, Germany.
    14. Markus Frölich, 2008. "Parametric and Nonparametric Regression in the Presence of Endogenous Control Variables," International Statistical Review, International Statistical Institute, vol. 76(2), pages 214-227, August.
    15. Tommaso Gabrieli & Antonio F. Galvao, Jr. & Antonio F. Galvao, Jr., 2010. "Who Benefits from Reducing the Cost of Formality? Quantile Regression Discontinuity Analysis," Real Estate & Planning Working Papers rep-wp2010-11, Henley Business School, University of Reading.
    16. Abrevaya, Jason & Xu, Haiqing, 2023. "Estimation of treatment effects under endogenous heteroskedasticity," Journal of Econometrics, Elsevier, vol. 234(2), pages 451-478.
    17. Cabane, Charlotte & Hille, Adrian & Lechner, Michael, 2015. "Mozart or Pelé? The effects of teenagers’ participation in music and sports," Economics Working Paper Series 1509, University of St. Gallen, School of Economics and Political Science.
    18. Menzel, Konrad, 2014. "Consistent estimation with many moment inequalities," Journal of Econometrics, Elsevier, vol. 182(2), pages 329-350.
    19. Thierry Magnac & Eric Maurin, 2008. "Partial Identification in Monotone Binary Models: Discrete Regressors and Interval Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 75(3), pages 835-864.
    20. repec:hal:wpspec:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    21. Christian Bontemps & Thierry Magnac & Eric Maurin, 2012. "Set Identified Linear Models," Econometrica, Econometric Society, vol. 80(3), pages 1129-1155, May.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:32/07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.