Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-03231392.html
   My bibliography  Save this paper

Nonparametric classes for identification in random coefficients models when regressors have limited variation

Author

Listed:
  • Christophe Gaillac

    (TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Eric Gautier

    (TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse)

Abstract
This paper studies point identification of the distribution of the coefficients in some random coefficients models with exogenous regressors when their support is a proper subset, possibly discrete but countable. We exhibit trade-offs between restrictions on the distribution of the random coefficients and the support of the regressors. We consider linear models including those with nonlinear transforms of a baseline regressor, with an infinite number of regressors and deconvolution, the binary choice model, and panel data models such as single-index panel data models and an extension of the Kotlarski lemma.

Suggested Citation

  • Christophe Gaillac & Eric Gautier, 2021. "Nonparametric classes for identification in random coefficients models when regressors have limited variation," Working Papers hal-03231392, HAL.
  • Handle: RePEc:hal:wpaper:hal-03231392
    Note: View the original document on HAL open archive server: https://hal.science/hal-03231392
    as

    Download full text from publisher

    File URL: https://hal.science/hal-03231392/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    2. Jeremy T. Fox, 2021. "A Note on Nonparametric Identification of Distributions of Random Coefficients in Multinomial Choice Models," Annals of Economics and Statistics, GENES, issue 142, pages 305-310.
    3. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    4. Hoderlein, Stefan & Holzmann, Hajo & Meister, Alexander, 2017. "The triangular model with random coefficients," Journal of Econometrics, Elsevier, vol. 201(1), pages 144-169.
    5. Ichimura, Hidehiko & Thompson, T. Scott, 1998. "Maximum likelihood estimation of a binary choice model with random coefficients of unknown distribution," Journal of Econometrics, Elsevier, vol. 86(2), pages 269-295, June.
    6. Matthew A Masten, 2018. "Random Coefficients on Endogenous Variables in Simultaneous Equations Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(2), pages 1193-1250.
    7. Evdokimov, Kirill & White, Halbert, 2012. "Some Extensions Of A Lemma Of Kotlarski," Econometric Theory, Cambridge University Press, vol. 28(4), pages 925-932, August.
    8. Steven T. Berry & Philip A. Haile, 2009. "Nonparametric Identification of Multinomial Choice Demand Models with Heterogeneous Consumers," Cowles Foundation Discussion Papers 1718, Cowles Foundation for Research in Economics, Yale University, revised Mar 2010.
    9. Gautier, Eric & Gaillac, Christophe, 2019. "Estimates for the SVD of the Truncated Fourier Transform on L2(cosh(b.)) and Stable Analytic Continuation," TSE Working Papers 19-1013, Toulouse School of Economics (TSE).
    10. Éric Gautier, 2021. "Relaxing Monotonicity in Endogenous Selection Models and Application to Surveys," Post-Print hal-03306234, HAL.
    11. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    12. Gwo Dong Lin, 2017. "Recent developments on the moment problem," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-17, December.
    13. Gautier, Eric & Gaillac, Christophe, 2019. "Adaptive estimation in the linear random coefficients model when regressors have limited variation," TSE Working Papers 19-1026, Toulouse School of Economics (TSE).
    14. Breunig, Christoph, 2021. "Varying random coefficient models," Journal of Econometrics, Elsevier, vol. 221(2), pages 381-408.
    15. Eric Gautier & Yuichi Kitamura, 2013. "Nonparametric Estimation in Random Coefficients Binary Choice Models," Econometrica, Econometric Society, vol. 81(2), pages 581-607, March.
    16. Gwo Dong Lin, 1997. "On the moment problems," Statistics & Probability Letters, Elsevier, vol. 35(1), pages 85-90, August.
    17. Heckman, James & Singer, Burton, 1984. "A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data," Econometrica, Econometric Society, vol. 52(2), pages 271-320, March.
    18. Kleiber, Christian & Stoyanov, Jordan, 2013. "Multivariate distributions and the moment problem," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 7-18.
    19. Carrasco, Marine & Florens, Jean-Pierre, 2011. "A Spectral Method For Deconvolving A Density," Econometric Theory, Cambridge University Press, vol. 27(3), pages 546-581, June.
    20. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    21. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
    22. Edward Vytlacil, 2002. "Independence, Monotonicity, and Latent Index Models: An Equivalence Result," Econometrica, Econometric Society, vol. 70(1), pages 331-341, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ao, 2023. "Sieve BLP: A semi-nonparametric model of demand for differentiated products," Journal of Econometrics, Elsevier, vol. 235(2), pages 325-351.
    2. Éric Gautier, 2021. "Relaxing Monotonicity in Endogenous Selection Models and Application to Surveys," Post-Print hal-03306234, HAL.
    3. Nail Kashaev, 2018. "Identification and estimation of multinomial choice models with latent special covariates," Papers 1811.05555, arXiv.org, revised Mar 2022.
    4. Roy Allen & John Rehbeck, 2020. "Identification of Random Coefficient Latent Utility Models," Papers 2003.00276, arXiv.org.
    5. Arthur Lewbel & Krishna Pendakur, 2017. "Unobserved Preference Heterogeneity in Demand Using Generalized Random Coefficients," Journal of Political Economy, University of Chicago Press, vol. 125(4), pages 1100-1148.
    6. Juan Carlos Escanciano, 2020. "Irregular Identification of Structural Models with Nonparametric Unobserved Heterogeneity," Papers 2005.08611, arXiv.org.
    7. Giovanni Compiani & Yuichi Kitamura, 2016. "Using mixtures in econometric models: a brief review and some new results," Econometrics Journal, Royal Economic Society, vol. 19(3), pages 95-127, October.
    8. Pereda-Fernández, Santiago, 2023. "Identification and estimation of triangular models with a binary treatment," Journal of Econometrics, Elsevier, vol. 234(2), pages 585-623.
    9. Klein, Tobias J., 2010. "Heterogeneous treatment effects: Instrumental variables without monotonicity?," Journal of Econometrics, Elsevier, vol. 155(2), pages 99-116, April.
    10. Matzkin, Rosa L., 2012. "Identification in nonparametric limited dependent variable models with simultaneity and unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 166(1), pages 106-115.
    11. Wang, Ao, 2020. "Identifying the Distribution of Random Coefficients in BLP Demand Models Using One Single Variation in Product Characteristics," The Warwick Economics Research Paper Series (TWERPS) 1304, University of Warwick, Department of Economics.
    12. Fabian Dunker & Stefan Hoderlein & Hiroaki Kaido, 2023. "Nonparametric identification of random coefficients in aggregate demand models for differentiated products," The Econometrics Journal, Royal Economic Society, vol. 26(2), pages 279-306.
    13. Gautier, Eric & Hoderlein, Stefan, 2011. "A triangular treatment effect model with random coefficients in the selection equation," TSE Working Papers 15-598, Toulouse School of Economics (TSE), revised 25 Aug 2015.
    14. Escanciano, Juan Carlos, 2023. "Irregular identification of structural models with nonparametric unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 234(1), pages 106-127.
    15. Fabian Dunker & Konstantin Eckle & Katharina Proksch & Johannes Schmidt-Hieber, 2017. "Tests for qualitative features in the random coefficients model," Courant Research Centre: Poverty, Equity and Growth - Discussion Papers 225, Courant Research Centre PEG.
    16. Steven T. Berry & Philip A. Haile, 2014. "Identification in Differentiated Products Markets Using Market Level Data," Econometrica, Econometric Society, vol. 82, pages 1749-1797, September.
    17. Fox, Jeremy T. & Kim, Kyoo il & Ryan, Stephen P. & Bajari, Patrick, 2012. "The random coefficients logit model is identified," Journal of Econometrics, Elsevier, vol. 166(2), pages 204-212.
    18. Arthur Lewbel, 2019. "The Identification Zoo: Meanings of Identification in Econometrics," Journal of Economic Literature, American Economic Association, vol. 57(4), pages 835-903, December.
    19. Dunker, Fabian & Hoderlein, Stefan & Kaido, Hiroaki & Sherman, Robert, 2018. "Nonparametric identification of the distribution of random coefficients in binary response static games of complete information," Journal of Econometrics, Elsevier, vol. 206(1), pages 83-102.
    20. Jeremy T. Fox & Amit Gandhi, 2009. "Identifying Heterogeneity in Economic Choice Models," NBER Working Papers 15147, National Bureau of Economic Research, Inc.

    More about this item

    Keywords

    Identification; Random Coefficients; Quasi-analyticity; Deconvolution; Deconvolution AMS 2010 Subject Classification: Primary 62P20; secondary 42A99; 62G07; 62G08;
    All these keywords.

    JEL classification:

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-03231392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.