Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/fth/harver/2048.html
   My bibliography  Save this paper

Bootstrap and Higher-Order Expansion Validity When Instruments May Be Weak

Author

Listed:
  • Marcelo J. Moreira
  • Jack R. Porter
  • Gustavo A. Suarez
Abstract
It is well-known that size-adjustments based on Edgeworth expansions for the t-statistic perform poorly when instruments are weakly correlated with the endogenous explanatory variable. This paper shows, however, that the lack of Edgeworth expansions and bootstrap validity are not tied to the weak instrument framework, but instead depends on which test statistic is examined. In particular, Edgeworth expansions are valid for the score and conditional likelihood ratio approaches, even when the instruments are uncorrelated with the endogenous explanatory variable. Furthermore, there is a belief that the bootstrap method fails when instruments are weak, since it replaces parameters with inconsistent estimators. Contrary to this notion, we provide a theoretical proof that guarantees the validity of the bootstrap for the score test, as well as the validity of the conditional bootstrap for many conditional tests. Monte Carlo simulations show that the bootstrap actually decreases size distortions in both cases.

Suggested Citation

  • Marcelo J. Moreira & Jack R. Porter & Gustavo A. Suarez, 2004. "Bootstrap and Higher-Order Expansion Validity When Instruments May Be Weak," Harvard Institute of Economic Research Working Papers 2048, Harvard - Institute of Economic Research.
  • Handle: RePEc:fth:harver:2048
    as

    Download full text from publisher

    File URL: http://www.economics.harvard.edu/pub/hier/2004/HIER2048.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Guggenberger, Patrik & Smith, Richard J., 2005. "Generalized Empirical Likelihood Estimators And Tests Under Partial, Weak, And Strong Identification," Econometric Theory, Cambridge University Press, vol. 21(4), pages 667-709, August.
    2. Donald W. K. Andrews, 2000. "Inconsistency of the Bootstrap when a Parameter Is on the Boundary of the Parameter Space," Econometrica, Econometric Society, vol. 68(2), pages 399-406, March.
    3. Nelson, Charles R & Startz, Richard, 1990. "Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 58(4), pages 967-976, July.
    4. Sargan, J D, 1976. "Econometric Estimators and the Edgeworth Approximation," Econometrica, Econometric Society, vol. 44(3), pages 421-448, May.
    5. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    6. Jinyong Hahn & Jerry Hausman & Guido Kuersteiner, 2004. "Estimation with weak instruments: Accuracy of higher-order bias and MSE approximations," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 272-306, June.
    7. Donald W.K. Andrews & Marcelo J. Moreira & James H. Stock, 2004. "Optimal Invariant Similar Tests for Instrumental Variables Regression," Cowles Foundation Discussion Papers 1476, Cowles Foundation for Research in Economics, Yale University.
    8. Frank Kleibergen, 2004. "Expansions of GMM statistics that indicate their properties under weak and/or many instruments and the bootstrap," Econometric Society 2004 North American Summer Meetings 408, Econometric Society.
    9. James H. Stock & Jonathan Wright, 2000. "GMM with Weak Identification," Econometrica, Econometric Society, vol. 68(5), pages 1055-1096, September.
    10. Atsushi Inoue, 2006. "A bootstrap approach to moment selection," Econometrics Journal, Royal Economic Society, vol. 9(1), pages 48-75, March.
    11. Moreira, Marcelo J., 2009. "Tests with correct size when instruments can be arbitrarily weak," Journal of Econometrics, Elsevier, vol. 152(2), pages 131-140, October.
    12. Qumsiyeh, Maher B., 1990. "Edgeworth expansion in regression models," Journal of Multivariate Analysis, Elsevier, vol. 35(1), pages 86-101, October.
    13. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
    14. Horowitz, Joel L., 2001. "The Bootstrap," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 52, pages 3159-3228, Elsevier.
    15. Frank Kleibergen, 2002. "Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression," Econometrica, Econometric Society, vol. 70(5), pages 1781-1803, September.
    16. Phillips, Peter C B, 1977. "A General Theorem in the Theory of Asymptotic Expansions as Approximations to the Finite Sample Distributions of Econometric Estimators," Econometrica, Econometric Society, vol. 45(6), pages 1517-1534, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrews, Donald W.K. & Guggenberger, Patrik, 2010. "Applications of subsampling, hybrid, and size-correction methods," Journal of Econometrics, Elsevier, vol. 158(2), pages 285-305, October.
    2. Davidson, Russell & MacKinnon, James G., 2010. "Wild Bootstrap Tests for IV Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 128-144.
    3. Donald W.K. Andrews & James H. Stock, 2005. "Inference with Weak Instruments," Cowles Foundation Discussion Papers 1530, Cowles Foundation for Research in Economics, Yale University.
    4. Iglesias Emma M., 2011. "Constrained k-class Estimators in the Presence of Weak Instruments," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(4), pages 1-13, September.
    5. Guggenberger, Patrik & Smith, Richard J., 2008. "Generalized empirical likelihood tests in time series models with potential identification failure," Journal of Econometrics, Elsevier, vol. 142(1), pages 134-161, January.
    6. Angelica Gonzalez, 2007. "Angelica Gonzalez," Edinburgh School of Economics Discussion Paper Series 168, Edinburgh School of Economics, University of Edinburgh.
    7. Russell Davidson & James G. MacKinnon, 2008. "Bootstrap inference in a linear equation estimated by instrumental variables," Econometrics Journal, Royal Economic Society, vol. 11(3), pages 443-477, November.
    8. Moreira, Marcelo J. & Porter, Jack R. & Suarez, Gustavo A., 2009. "Bootstrap validity for the score test when instruments may be weak," Journal of Econometrics, Elsevier, vol. 149(1), pages 52-64, April.
    9. Giovanni Angelini & Giuseppe Cavaliere & Luca Fanelli, 2022. "Bootstrap inference and diagnostics in state space models: With applications to dynamic macro models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 3-22, January.
    10. Russell Davidson & James G. MacKinnon, 2014. "Bootstrap Confidence Sets with Weak Instruments," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 651-675, August.
    11. Phillips, Garry D.A. & Liu-Evans, Gareth, 2016. "Approximating and reducing bias in 2SLS estimation of dynamic simultaneous equation models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 734-762.
    12. Morris, Stephen D., 2017. "DSGE pileups," Journal of Economic Dynamics and Control, Elsevier, vol. 74(C), pages 56-86.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moreira, Marcelo J. & Porter, Jack R. & Suarez, Gustavo A., 2009. "Bootstrap validity for the score test when instruments may be weak," Journal of Econometrics, Elsevier, vol. 149(1), pages 52-64, April.
    2. Donald W.K. Andrews & James H. Stock, 2005. "Inference with Weak Instruments," NBER Technical Working Papers 0313, National Bureau of Economic Research, Inc.
    3. Moreira, Humberto & Moreira, Marcelo J., 2019. "Optimal two-sided tests for instrumental variables regression with heteroskedastic and autocorrelated errors," Journal of Econometrics, Elsevier, vol. 213(2), pages 398-433.
    4. Humberto Moreira & Marcelo Moreira, 2016. "Optimal two-sided tests for instrumental variables regression with heteroskedastic and autocorrelated errors," CeMMAP working papers 25/16, Institute for Fiscal Studies.
    5. Marcelo Moreira & Geert Ridder, 2019. "Efficiency loss of asymptotically efficient tests in an instrumental variables regression," CeMMAP working papers CWP03/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Joel L. Horowitz, 2018. "Non-Asymptotic Inference in Instrumental Variables Estimation," Papers 1809.03600, arXiv.org.
    7. Murray Michael P., 2017. "Linear Model IV Estimation When Instruments Are Many or Weak," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    8. Dufour, Jean-Marie & Taamouti, Mohamed, 2007. "Further results on projection-based inference in IV regressions with weak, collinear or missing instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 133-153, July.
    9. Horowitz, Joel L., 2021. "Bounding the difference between true and nominal rejection probabilities in tests of hypotheses about instrumental variables models," Journal of Econometrics, Elsevier, vol. 222(2), pages 1057-1082.
    10. Joel L. Horowitz, 2017. "Non-asymptotic inference in instrumental variables estimation," CeMMAP working papers CWP46/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Guggenberger, Patrik & Ramalho, Joaquim J.S. & Smith, Richard J., 2012. "GEL statistics under weak identification," Journal of Econometrics, Elsevier, vol. 170(2), pages 331-349.
    12. Tetsuya Kaji, 2019. "Theory of Weak Identification in Semiparametric Models," Papers 1908.10478, arXiv.org, revised Aug 2020.
    13. Joel L. Horowitz, 2017. "Non-asymptotic inference in instrumental variables estimation," CeMMAP working papers 46/17, Institute for Fiscal Studies.
    14. Cheng, Xu, 2015. "Robust inference in nonlinear models with mixed identification strength," Journal of Econometrics, Elsevier, vol. 189(1), pages 207-228.
    15. Joel L. Horowitz, 2018. "Non-asymptotic inference in instrumental variables estimation," CeMMAP working papers CWP52/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Michael P. Murray, 2006. "Avoiding Invalid Instruments and Coping with Weak Instruments," Journal of Economic Perspectives, American Economic Association, vol. 20(4), pages 111-132, Fall.
    17. Bekker, Paul A. & Lawford, Steve, 2008. "Symmetry-based inference in an instrumental variable setting," Journal of Econometrics, Elsevier, vol. 142(1), pages 28-49, January.
    18. Chao, John & Swanson, Norman R., 2007. "Alternative approximations of the bias and MSE of the IV estimator under weak identification with an application to bias correction," Journal of Econometrics, Elsevier, vol. 137(2), pages 515-555, April.
    19. Dufour, Jean-Marie & Khalaf, Lynda & Kichian, Maral, 2006. "Inflation dynamics and the New Keynesian Phillips Curve: An identification robust econometric analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1707-1727.
    20. Aviv Nevo & Adam M. Rosen, 2012. "Identification With Imperfect Instruments," The Review of Economics and Statistics, MIT Press, vol. 94(3), pages 659-671, August.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fth:harver:2048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/ieharus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.