Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/1829.html
   My bibliography  Save this paper

Quasi-random simulation of discrete choice models

Author

Listed:
  • Sándor, Z.
  • Train, K.
Abstract
We describe the properties of (t,m,s)-nets and Halton draws. Four types of (t,m,s)-nets, two types of Halton draws, and independent draws are compared in an application of maximum simulated likelihood estimation of a mixed logit model. All of the quasi-random procedures are found to perform far better than independent draws. The best performance is attained by one of the (t,m,s)-nets. The properties of the nets imply that two of them should outperform the other two, and our results confirm this expectation. The two more-accurate nets perform better than both types of Halton draws, while the two less-accurate nets perform worse than the Halton draws.

Suggested Citation

  • Sándor, Z. & Train, K., 2004. "Quasi-random simulation of discrete choice models," Econometric Institute Research Papers EI 2004-51, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:1829
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/1829/ei200451.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Brownstone, David & Train, Kenneth, 1998. "Forecasting new product penetration with flexible substitution patterns," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 109-129, November.
    2. Small, Kenneth A & Winston, Clifford & Yan, Jia, 2002. "Uncovering the Distribution of Motorists' Preferences for Travel Time and Reliability: Implications for Road Pricing," University of California Transportation Center, Working Papers qt8zd2r34k, University of California Transportation Center.
    3. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    4. David Revelt & Kenneth Train, 1998. "Mixed Logit With Repeated Choices: Households' Choices Of Appliance Efficiency Level," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 647-657, November.
    5. Bhat, Chandra, 1999. "An analysis of evening commute stop-making behavior using repeated choice observations from a multi-day survey," Transportation Research Part B: Methodological, Elsevier, vol. 33(7), pages 495-510, September.
    6. McFadden, Daniel & Ruud, Paul A, 1994. "Estimation by Simulation," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 591-608, November.
    7. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    8. Tuffin Bruno, 1996. "On the use of low discrepancy sequences in Monte Carlo methods," Monte Carlo Methods and Applications, De Gruyter, vol. 2(4), pages 295-320, December.
    9. Lee, Lung-Fei, 1995. "Asymptotic Bias in Simulated Maximum Likelihood Estimation of Discrete Choice Models," Econometric Theory, Cambridge University Press, vol. 11(3), pages 437-483, June.
    10. Kenneth Train ., 2000. "Halton Sequences for Mixed Logit," Economics Working Papers E00-278, University of California at Berkeley.
    11. Bhat, Chandra R., 2001. "Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 677-693, August.
    12. Bhat, Chandra R., 1998. "Accommodating variations in responsiveness to level-of-service measures in travel mode choice modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(7), pages 495-507, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhat, Chandra & Zhao, Huimin, 2002. "The spatial analysis of activity stop generation," Transportation Research Part B: Methodological, Elsevier, vol. 36(6), pages 557-575, July.
    2. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    3. Stephane Hess & John W. Polak, 2004. "An analysis of parking behaviour using discrete choice models calibrated on SP datasets," ERSA conference papers ersa04p60, European Regional Science Association.
    4. Sandor, Zsolt & Andras, P.Peter, 2004. "Alternative sampling methods for estimating multivariate normal probabilities," Journal of Econometrics, Elsevier, vol. 120(2), pages 207-234, June.
    5. Eran Ben-Elia & Robert Ishaq & Yoram Shiftan, 2013. "“If only I had taken the other road...”: Regret, risk and reinforced learning in informed route-choice," Transportation, Springer, vol. 40(2), pages 269-293, February.
    6. Marco A. Palma & Dmitry V. Vedenov & David Bessler, 2020. "The order of variables, simulation noise, and accuracy of mixed logit estimates," Empirical Economics, Springer, vol. 58(5), pages 2049-2083, May.
    7. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    8. Heiss, Florian & Winschel, Viktor, 2008. "Likelihood approximation by numerical integration on sparse grids," Journal of Econometrics, Elsevier, vol. 144(1), pages 62-80, May.
    9. David Hensher & William Greene, 2003. "The Mixed Logit model: The state of practice," Transportation, Springer, vol. 30(2), pages 133-176, May.
    10. Peter Haan, 2005. "State Dependence and Female Labor Supply in Germany: The Extensive and the Intensive Margin," Discussion Papers of DIW Berlin 538, DIW Berlin, German Institute for Economic Research.
    11. Staus, Alexander, 2008. "Standard and Shuffled Halton Sequences in a Mixed Logit Model," Working Papers 93856, Universitaet Hohenheim, Institute of Agricultural Policy and Agricultural Markets.
    12. Daniel Ackerberg, 2009. "A new use of importance sampling to reduce computational burden in simulation estimation," Quantitative Marketing and Economics (QME), Springer, vol. 7(4), pages 343-376, December.
    13. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    14. Joan L. Walker & Moshe Ben-Akiva, 2011. "Advances in Discrete Choice: Mixture Models," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 8, Edward Elgar Publishing.
    15. Ida, Takanori & Goto, Rei, 2009. "Interdependency among addictive behaviours and time/risk preferences: Discrete choice model analysis of smoking, drinking, and gambling," Journal of Economic Psychology, Elsevier, vol. 30(4), pages 608-621, August.
    16. Heiss, Florian & Winschel, Viktor, 2006. "Estimation with Numerical Integration on Sparse Grids," Discussion Papers in Economics 916, University of Munich, Department of Economics.
    17. Ricardo Daziano & Denis Bolduc, 2013. "Covariance, identification, and finite-sample performance of the MSL and Bayes estimators of a logit model with latent attributes," Transportation, Springer, vol. 40(3), pages 647-670, May.
    18. Islam, Mouyid, 2015. "Multi-Vehicle Crashes Involving Large Trucks: A Random Parameter Discrete Outcome Modeling Approach," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 54(1).
    19. Campbell, Danny, 2007. "Combining mixed logit models and random effects models to identify the determinants of willingness to pay for rural landscape improvements," 81st Annual Conference, April 2-4, 2007, Reading University, UK 7975, Agricultural Economics Society.
    20. Czajkowski, Mikołaj & Budziński, Wiktor, 2019. "Simulation error in maximum likelihood estimation of discrete choice models," Journal of choice modelling, Elsevier, vol. 31(C), pages 73-85.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:1829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.