Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/58322.html
   My bibliography  Save this paper

Estimating and forecasting with a dynamic spatial panel data model

Author

Listed:
  • Baltagi, Badi H.
  • Fingleton, Bernard
  • Pirotte, Alain
Abstract
This paper focuses on the estimation and predictive performance of several estimators for the dynamic and autoregressive spatial lag panel data model with spatially correlated disturbances. In the spirit of Arellano and Bond (1991) and Mutl (2006), a dynamic spatial GMM estimator is proposed based on Kapoor, Kelejian and Prucha (2007) for the Spatial AutoRegressive (SAR) error model. The main idea is to mix non-spatial and spatial instruments to obtain consistent estimates of the parameters. Then, a linear predictor of this spatial dynamic model is derived. Using Monte Carlo simulations, we compare the performance of the GMM spatial estimator to that of spatial and non-spatial estimators and illustrate our approach with an application to new economic geography.

Suggested Citation

  • Baltagi, Badi H. & Fingleton, Bernard & Pirotte, Alain, 2011. "Estimating and forecasting with a dynamic spatial panel data model," LSE Research Online Documents on Economics 58322, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:58322
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/58322/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yu, Jihai & de Jong, Robert & Lee, Lung-fei, 2008. "Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both n and T are large," Journal of Econometrics, Elsevier, vol. 146(1), pages 118-134, September.
    2. Kukenova, Madina & Monteiro, Jose-Antonio, 2008. "Spatial Dynamic Panel Model and System GMM: A Monte Carlo Investigation," MPRA Paper 11569, University Library of Munich, Germany, revised Nov 2008.
    3. Trapani, Lorenzo & Urga, Giovanni, 2009. "Optimal forecasting with heterogeneous panels: A Monte Carlo study," International Journal of Forecasting, Elsevier, vol. 25(3), pages 567-586, July.
    4. Elhorst, J. Paul, 2010. "Dynamic panels with endogenous interaction effects when T is small," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 272-282, September.
    5. Chamberlain, Gary, 1984. "Panel data," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 22, pages 1247-1318, Elsevier.
    6. Arellano, Manuel & Honore, Bo, 2001. "Panel data models: some recent developments," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 53, pages 3229-3296, Elsevier.
    7. Richard Blundell & Stephen Bond & Frank Windmeijer, 2000. "Estimation in dynamic panel data models: improving on the performance of the standard GMM estimator," IFS Working Papers W00/12, Institute for Fiscal Studies.
    8. Bernard Fingleton & Manfred Fischer, 2010. "Neoclassical theory versus new economic geography: competing explanations of cross-regional variation in economic development," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 44(3), pages 467-491, June.
    9. Baltagi, Badi H. & Bresson, Georges & Pirotte, Alain, 2012. "Forecasting with spatial panel data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3381-3397.
    10. Baltagi, Badi H. & Pirotte, Alain, 2010. "Panel data inference under spatial dependence," Economic Modelling, Elsevier, vol. 27(6), pages 1368-1381, November.
    11. Kiviet, Jan F., 1995. "On bias, inconsistency, and efficiency of various estimators in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 68(1), pages 53-78, July.
    12. Badi Baltagi & Dong Li, 2006. "Prediction in the Panel Data Model with Spatial Correlation: the Case of Liquor," Spatial Economic Analysis, Taylor & Francis Journals, vol. 1(2), pages 175-185.
    13. repec:pra:mprapa:13404 is not listed on IDEAS
    14. Mark Harris & Laszlo Matyas & Patrick Sevestre, 2008. "Dynamic Models for Short Panels," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00279980, HAL.
    15. Fingleton, Bernard, 2010. "Predicting the Geography of House Prices," MPRA Paper 21113, University Library of Munich, Germany.
    16. Bernard Fingleton, 2009. "Prediction Using Panel Data Regression with Spatial Random Effects," International Regional Science Review, , vol. 32(2), pages 195-220, April.
    17. Konstantin Arkadievich Kholodilin & Boriss Siliverstovs & Stefan Kooths, 2008. "A Dynamic Panel Data Approach to the Forecasting of the GDP of German Länder," Spatial Economic Analysis, Taylor & Francis Journals, vol. 3(2), pages 195-207.
    18. Jacobs, J.P.A.M. & Ligthart, J.E. & Vrijburg, H., 2009. "Dynamic Panel Data Models Featuring Endogenous Interaction and Spatially Correlated Errors," Other publications TiSEM d473cc67-03f6-4389-9a9f-3, Tilburg University, School of Economics and Management.
    19. Badi H. Baltagi & Bernard Fingleton & Alain Pirotte, 2014. "Estimating and Forecasting with a Dynamic Spatial Panel Data Model," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(1), pages 112-138, February.
    20. Sevestre, P. & Trognon, A., 1985. "A note on autoregressive error components models," Journal of Econometrics, Elsevier, vol. 28(2), pages 231-245, May.
    21. Anderson, T. W. & Hsiao, Cheng, 1982. "Formulation and estimation of dynamic models using panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 47-82, January.
    22. Taub, Allan J., 1979. "Prediction in the context of the variance-components model," Journal of Econometrics, Elsevier, vol. 10(1), pages 103-107, April.
    23. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    24. Lee, Lung-fei & Yu, Jihai, 2010. "Estimation of spatial autoregressive panel data models with fixed effects," Journal of Econometrics, Elsevier, vol. 154(2), pages 165-185, February.
    25. Wilfried Koch, 2008. "Development Accounting with Spatial Effects," Spatial Economic Analysis, Taylor & Francis Journals, vol. 3(3), pages 321-342.
    26. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    27. László Mátyás & Patrick Sevestre (ed.), 2008. "The Econometrics of Panel Data," Advanced Studies in Theoretical and Applied Econometrics, Springer, number 978-3-540-75892-1, July-Dece.
    28. Salima Bouayad-Agha & Lionel Védrine, 2010. "Estimation Strategies for a Spatial Dynamic Panel using GMM. A New Approach to the Convergence Issue of European Regions," Spatial Economic Analysis, Taylor & Francis Journals, vol. 5(2), pages 205-227.
    29. Yu, Jihai & Lee, Lung-fei, 2010. "Estimation Of Unit Root Spatial Dynamic Panel Data Models," Econometric Theory, Cambridge University Press, vol. 26(5), pages 1332-1362, October.
    30. Nickell, Stephen J, 1981. "Biases in Dynamic Models with Fixed Effects," Econometrica, Econometric Society, vol. 49(6), pages 1417-1426, November.
    31. Simonetta Longhi & Peter Nijkamp, 2007. "Forecasting Regional Labor Market Developments under Spatial Autocorrelation," International Regional Science Review, , vol. 30(2), pages 100-119, April.
    32. Kapoor, Mudit & Kelejian, Harry H. & Prucha, Ingmar R., 2007. "Panel data models with spatially correlated error components," Journal of Econometrics, Elsevier, vol. 140(1), pages 97-130, September.
    33. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    34. Lee, Lung-fei & Yu, Jihai, 2010. "Some recent developments in spatial panel data models," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 255-271, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baltagi, Badi H. & Fingleton, Bernard & Pirotte, Alain, 2019. "A time-space dynamic panel data model with spatial moving average errors," Regional Science and Urban Economics, Elsevier, vol. 76(C), pages 13-31.
    2. J. Paul Elhorst, 2014. "Dynamic Spatial Panels: Models, Methods and Inferences," SpringerBriefs in Regional Science, in: Spatial Econometrics, edition 127, chapter 0, pages 95-119, Springer.
    3. Cizek, P. & Jacobs, J. & Ligthart, J.E. & Vrijburg, H., 2015. "GMM Estimation of Fixed Effects Dynamic Panel Data Models with Spatial Lag and Spatial Errors (Revised version of CentER DP 2011-134)," Other publications TiSEM b4bbf44a-7834-491d-94c8-6, Tilburg University, School of Economics and Management.
    4. Kripfganz, Sebastian, 2014. "Unconditional Transformed Likelihood Estimation of Time-Space Dynamic Panel Data Models," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100604, Verein für Socialpolitik / German Economic Association.
    5. Cizek, P. & Jacobs, J.P.A.M. & Ligthart, J.E. & Vrijburg, H., 2011. "GMM Estimation of Fixed Effects Dynamic Panel Data Models with Spatial Lag and Spatial Errors (Replaced by CentER DP 2015-003)," Other publications TiSEM b80cf367-c435-4f20-8e4c-8, Tilburg University, School of Economics and Management.
    6. Giuseppe Arbia, 2011. "A Lustrum of SEA: Recent Research Trends Following the Creation of the Spatial Econometrics Association (2007--2011)," Spatial Economic Analysis, Taylor & Francis Journals, vol. 6(4), pages 377-395, July.
    7. Su, Liangjun & Yang, Zhenlin, 2015. "QML estimation of dynamic panel data models with spatial errors," Journal of Econometrics, Elsevier, vol. 185(1), pages 230-258.
    8. Baltagi, Badi H. & Pirotte, Alain, 2014. "Prediction in a spatial nested error components panel data model," International Journal of Forecasting, Elsevier, vol. 30(3), pages 407-414.
    9. A. M. Angulo & J. Mur & F. J. Trívez, 2018. "Measuring resilience to economic shocks: an application to Spain," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 60(2), pages 349-373, March.
    10. Li, Kunpeng, 2017. "Fixed-effects dynamic spatial panel data models and impulse response analysis," Journal of Econometrics, Elsevier, vol. 198(1), pages 102-121.
    11. Lee, Lung-fei & Yu, Jihai, 2010. "Some recent developments in spatial panel data models," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 255-271, September.
    12. Durand, Robert B. & Greene, William H. & Harris, Mark N. & Khoo, Joye, 2022. "Heterogeneity in speed of adjustment using finite mixture models," Economic Modelling, Elsevier, vol. 107(C).
    13. Giulio Cainelli & Sandro Montresor & Giuseppe Vittucci Marzetti, 2014. "Spatial agglomeration and firm exit: a spatial dynamic analysis for Italian provinces," Small Business Economics, Springer, vol. 43(1), pages 213-228, June.
    14. Yang, Zhenlin & Yu, Jihai & Liu, Shew Fan, 2016. "Bias correction and refined inferences for fixed effects spatial panel data models," Regional Science and Urban Economics, Elsevier, vol. 61(C), pages 52-72.
    15. Moscone, Francesco & Tosetti, Elisa & Canepa, Alessandra, 2014. "Real estate market and financial stability in US metropolitan areas: A dynamic model with spatial effects," Regional Science and Urban Economics, Elsevier, vol. 49(C), pages 129-146.
    16. Lee, Lung-fei & Yu, Jihai, 2015. "Estimation of fixed effects panel regression models with separable and nonseparable space–time filters," Journal of Econometrics, Elsevier, vol. 184(1), pages 174-192.
    17. Roger Bivand & Giovanni Millo & Gianfranco Piras, 2021. "A Review of Software for Spatial Econometrics in R," Mathematics, MDPI, vol. 9(11), pages 1-40, June.
    18. Montmartin, Benjamin & Herrera, Marcos, 2015. "Internal and external effects of R&D subsidies and fiscal incentives: Empirical evidence using spatial dynamic panel models," Research Policy, Elsevier, vol. 44(5), pages 1065-1079.
    19. Baltagi, Badi H., 2013. "Panel Data Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 995-1024, Elsevier.
    20. repec:rri:wpaper:201303 is not listed on IDEAS
    21. Alexander Klemm & Stefan Parys, 2012. "Empirical evidence on the effects of tax incentives," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 19(3), pages 393-423, June.

    More about this item

    Keywords

    panel data; spatial lag; error components; linear predictor; GMM; spatial autocorrelation;
    All these keywords.

    JEL classification:

    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:58322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.