Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/crb/wpaper/2015-07.html
   My bibliography  Save this paper

A strategic implementation of the sequential equal surplus division rule for digraph cooperative games

Author

Listed:
  • Sylvain Béal

    (CRESE EA3190, Univ. Bourgogne Franche-Comté)

  • Eric Rémila

    (Université de Saint-Etienne, CNRS UMR 5824 GATE Lyon Saint-Etienne)

  • Philippe Solal

    (Université de Saint-Etienne, CNRS UMR 5824 GATE Lyon Saint-Etienne)

Abstract
We provide a strategic implementation of the sequential equal surplus division rule (Béal et al., 2014). Precisely, we design a non-cooperative mechanism of which the unique subgame perfect equilibrium payoffs correspond to the sequential equal surplus division outcome of a superadditive rooted tree TU-game. This mechanism borrowed from the bidding mechanism designed by Pérez-Castrillo and Wettstein (2001), but takes into account the direction of the edges connecting any two players in the rood tree, which reflects some dominance relation between them

Suggested Citation

  • Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "A strategic implementation of the sequential equal surplus division rule for digraph cooperative games," Working Papers 2015-07, CRESE.
  • Handle: RePEc:crb:wpaper:2015-07
    as

    Download full text from publisher

    File URL: https://crese.univ-fcomte.fr/uploads/wp/WP-2015-07.pdf
    File Function: First version, 2015
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Juan Vidal-Puga, 2005. "Implementation of the Levels Structure Value," Annals of Operations Research, Springer, vol. 137(1), pages 191-209, July.
    2. Lehrer, E, 1988. "An Axiomatization of the Banzhaf Value," International Journal of Game Theory, Springer;Game Theory Society, vol. 17(2), pages 89-99.
    3. Perez-Castrillo, David & Wettstein, David, 2001. "Bidding for the Surplus : A Non-cooperative Approach to the Shapley Value," Journal of Economic Theory, Elsevier, vol. 100(2), pages 274-294, October.
    4. Herings, P. Jean Jacques & van der Laan, Gerard & Talman, Dolf, 2008. "The average tree solution for cycle-free graph games," Games and Economic Behavior, Elsevier, vol. 62(1), pages 77-92, January.
    5. Yuan Ju & David Wettstein, 2009. "Implementing cooperative solution concepts: a generalized bidding approach," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 39(2), pages 307-330, May.
    6. Sylvain Béal & Amandine Ghintran & Eric Rémila & Philippe Solal, 2015. "The sequential equal surplus division for rooted forest games and an application to sharing a river with bifurcations," Theory and Decision, Springer, vol. 79(2), pages 251-283, September.
    7. Haller, Hans, 1994. "Collusion Properties of Values," International Journal of Game Theory, Springer;Game Theory Society, vol. 23(3), pages 261-281.
    8. Aadland, David & Kolpin, Van, 1998. "Shared irrigation costs: An empirical and axiomatic analysis," Mathematical Social Sciences, Elsevier, vol. 35(2), pages 203-218, March.
    9. Yuan Ju & David Wettstein, 2009. "Implementing cooperative solution concepts: a generalized bidding approach," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 39(2), pages 307-330, May.
    10. van den Brink, René & van der Laan, Gerard & Moes, Nigel, 2013. "A strategic implementation of the Average Tree solution for cycle-free graph games," Journal of Economic Theory, Elsevier, vol. 148(6), pages 2737-2748.
    11. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    12. Ju, Yuan, 2012. "Reject and renegotiate: The Shapley value in multilateral bargaining," Journal of Mathematical Economics, Elsevier, vol. 48(6), pages 431-436.
    13. Perez-Castrillo, David & Wettstein, David, 2005. "Forming efficient networks," Economics Letters, Elsevier, vol. 87(1), pages 83-87, April.
    14. René Brink & Yukihiko Funaki & Yuan Ju, 2013. "Reconciling marginalism with egalitarianism: consistency, monotonicity, and implementation of egalitarian Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(3), pages 693-714, March.
    15. Slikker, Marco, 2007. "Bidding for surplus in network allocation problems," Journal of Economic Theory, Elsevier, vol. 137(1), pages 493-511, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Borkotokey, Surajit & Choudhury, Dhrubajit & Kumar, Rajnish & Sarangi, Sudipta, 2020. "Consolidating Marginalism and Egalitarianism: A New Value for Transferable Utility Games," QBS Working Paper Series 2020/12, Queen's University Belfast, Queen's Business School.
    2. Béal, Sylvain & Ferrières, Sylvain & Rémila, Eric & Solal, Philippe, 2018. "Axiomatization of an allocation rule for ordered tree TU-games," Mathematical Social Sciences, Elsevier, vol. 93(C), pages 132-140.
    3. Dhrubajit Choudhury & Surajit Borkotokey & Rajnish Kumar & Sudipta Sarangi, 2021. "The Egalitarian Shapley value: a generalization based on coalition sizes," Annals of Operations Research, Springer, vol. 301(1), pages 55-63, June.
    4. Liu, Jia-Cai & Sheu, Jiuh-Biing & Li, Deng-Feng & Dai, Yong-Wu, 2021. "Collaborative profit allocation schemes for logistics enterprise coalitions with incomplete information," Omega, Elsevier, vol. 101(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van den Brink, René & van der Laan, Gerard & Moes, Nigel, 2013. "A strategic implementation of the Average Tree solution for cycle-free graph games," Journal of Economic Theory, Elsevier, vol. 148(6), pages 2737-2748.
    2. Sylvain Béal & Sylvain Ferrières & Eric Rémila & Philippe Solal, 2017. "Axiomatic and bargaining foundation of an allocation rule for ordered tree TU-games," Post-Print halshs-01644797, HAL.
    3. Béal, Sylvain & Ferrières, Sylvain & Rémila, Eric & Solal, Philippe, 2018. "Axiomatization of an allocation rule for ordered tree TU-games," Mathematical Social Sciences, Elsevier, vol. 93(C), pages 132-140.
    4. Jun Su & Yuan Liang & Guangmin Wang & Genjiu Xu, 2020. "Characterizations, Potential, and an Implementation of the Shapley-Solidarity Value," Mathematics, MDPI, vol. 8(11), pages 1-20, November.
    5. Surajit Borkotokey & Sujata Goala & Niharika Kakoty & Parishmita Boruah, 2022. "The component-wise egalitarian Myerson value for Network Games," Papers 2201.02793, arXiv.org.
    6. Niharika Kakoty & Surajit Borkotokey & Rajnish Kumar & Abhijit Bora, 2024. "Weighted Myerson value for Network games," Papers 2402.11464, arXiv.org.
    7. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2012. "The sequential equal surplus division for sharing a river," MPRA Paper 37346, University Library of Munich, Germany.
    8. Sun, Chaoran, 2022. "Bidding against a Buyout: Implementing the Shapley value and the equal surplus value," Journal of Mathematical Economics, Elsevier, vol. 101(C).
    9. Jean-François Caulier & Michel Grabisch & Agnieszka Rusinowska, 2015. "An allocation rule for dynamic random network formation processes," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 60(2), pages 283-313, October.
    10. Sylvain Béal & Amandine Ghintran & Eric Rémila & Philippe Solal, 2015. "The sequential equal surplus division for rooted forest games and an application to sharing a river with bifurcations," Theory and Decision, Springer, vol. 79(2), pages 251-283, September.
    11. Bergantiños, Gustavo & Vidal-Puga, Juan, 2010. "Realizing fair outcomes in minimum cost spanning tree problems through non-cooperative mechanisms," European Journal of Operational Research, Elsevier, vol. 201(3), pages 811-820, March.
    12. Sylvain Béal & Eric Rémila & Philippe Solal, 2017. "Axiomatization and implementation of a class of solidarity values for TU-games," Theory and Decision, Springer, vol. 83(1), pages 61-94, June.
    13. van den Brink, René, 2012. "Efficiency and collusion neutrality in cooperative games and networks," Games and Economic Behavior, Elsevier, vol. 76(1), pages 344-348.
    14. Emilio Calvo & Esther Gutiérrez-López, 2016. "A strategic approach for the discounted Shapley values," Theory and Decision, Springer, vol. 80(2), pages 271-293, February.
    15. María Gómez-Rúa & Juan Vidal-Puga, 2011. "Balanced per capita contributions and level structure of cooperation," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 167-176, July.
    16. Calvo, Emilio & Gutiérrez-López, Esther, 2021. "Recursive and bargaining values," Mathematical Social Sciences, Elsevier, vol. 113(C), pages 97-106.
    17. Pérez-Castrillo, David & Quérou, Nicolas, 2012. "Smooth multibidding mechanisms," Games and Economic Behavior, Elsevier, vol. 76(2), pages 420-438.
    18. Roberto Serrano, 2021. "Sixty-seven years of the Nash program: time for retirement?," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(1), pages 35-48, March.
    19. Koji Yokote & Takumi Kongo & Yukihiko Funaki, 2021. "Redistribution to the less productive: parallel characterizations of the egalitarian Shapley and consensus values," Theory and Decision, Springer, vol. 91(1), pages 81-98, July.
    20. René Brink & Yukihiko Funaki, 2015. "Implementation and axiomatization of discounted Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 45(2), pages 329-344, September.

    More about this item

    Keywords

    Bidding approach; Implementation; Rooted tree TU-games; Sequential equal surplus division;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crb:wpaper:2015-07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lauent Kondratuk (email available below). General contact details of provider: https://edirc.repec.org/data/crufcfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.