Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/8866.html
   My bibliography  Save this paper

Markov-switching dynamic factor models in real time

Author

Listed:
  • Pérez-Quirós, Gabriel
  • Poncela, Pilar
  • Camacho, Máximo
Abstract
We extend the Markov-switching dynamic factor model to account for some of the specificities of the day-to-day monitoring of economic developments from macroeconomic indicators, such as ragged edges and mixed frequencies. We examine the theoretical benefits of this extension and corroborate the results through several MonteCarlo simulations. Finally, we assess its empirical reliability to compute real-time inferences of the US business cycle.

Suggested Citation

  • Pérez-Quirós, Gabriel & Poncela, Pilar & Camacho, Máximo, 2012. "Markov-switching dynamic factor models in real time," CEPR Discussion Papers 8866, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:8866
    as

    Download full text from publisher

    File URL: https://cepr.org/publications/DP8866
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
    2. Diebold, Francis X & Rudebusch, Glenn D, 1996. "Measuring Business Cycles: A Modern Perspective," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 67-77, February.
    3. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    4. Camacho Maximo & Perez Quiros Gabriel, 2007. "Jump-and-Rest Effect of U.S. Business Cycles," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 11(4), pages 1-39, December.
    5. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1.
    6. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    7. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    8. Chauvet, Marcelle, 1998. "An Econometric Characterization of Business Cycle Dynamics with Factor Structure and Regime Switching," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 969-996, November.
    9. S. Boragan Aruoba & Francis X. Diebold, 2010. "Real-Time Macroeconomic Monitoring: Real Activity, Inflation, and Interactions," American Economic Review, American Economic Association, vol. 100(2), pages 20-24, May.
    10. Travis J. Berge & Òscar Jordà, 2011. "Evaluating the Classification of Economic Activity into Recessions and Expansions," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(2), pages 246-277, April.
    11. Tommaso Proietti & Filippo Moauro, 2006. "Dynamic factor analysis with non‐linear temporal aggregation constraints," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(2), pages 281-300, April.
    12. Chauvet, Marcelle & Piger, Jeremy, 2008. "A Comparison of the Real-Time Performance of Business Cycle Dating Methods," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 42-49, January.
    13. Chang-Jin Kim & Charles R. Nelson, 1998. "Business Cycle Turning Points, A New Coincident Index, And Tests Of Duration Dependence Based On A Dynamic Factor Model With Regime Switching," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 188-201, May.
    14. Kim, Chang-Jin, 1994. "Dynamic linear models with Markov-switching," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 1-22.
    15. Maximo Camacho & Gabriel Perez‐Quiros & Pilar Poncela, 2015. "Extracting Nonlinear Signals from Several Economic Indicators," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(7), pages 1073-1089, November.
    16. Hamilton, James D., 2011. "Calling recessions in real time," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1006-1026, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    2. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
    3. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    4. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    5. Maximo Camacho & Gabriel Perez‐Quiros & Pilar Poncela, 2015. "Extracting Nonlinear Signals from Several Economic Indicators," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(7), pages 1073-1089, November.
    6. Maximo Camacho & Gabriel Perez-Quiros & Pilar Poncela, 2010. "Green shoots in the euro area. A real time measure," Working Papers 1026, Banco de España.
    7. Camacho, Maximo & Perez Quiros, Gabriel & Poncela, Pilar, 2014. "Green shoots and double dips in the euro area: A real time measure," International Journal of Forecasting, Elsevier, vol. 30(3), pages 520-535.
    8. Leiva-Leon Danilo, 2014. "Real vs. nominal cycles: a multistate Markov-switching bi-factor approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(5), pages 557-580, December.
    9. Heinrich, Markus & Carstensen, Kai & Reif, Magnus & Wolters, Maik, 2017. "Predicting Ordinary and Severe Recessions with a Three-State Markov-Switching Dynamic Factor Model. An Application to the German Business Cycle," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168206, Verein für Socialpolitik / German Economic Association.
    10. Guérin, Pierre & Leiva-Leon, Danilo, 2017. "Model averaging in Markov-switching models: Predicting national recessions with regional data," Economics Letters, Elsevier, vol. 157(C), pages 45-49.
    11. Catherine Doz & Laurent Ferrara & Pierre-Alain Pionnier, 2020. "Business cycle dynamics after the Great Recession: An Extended Markov-Switching Dynamic Factor Model," Working Papers halshs-02443364, HAL.
    12. Michael T. Owyang & Jeremy Piger & Daniel Soques, 2022. "Contagious switching," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 415-432, March.
    13. van Os, Bram & van Dijk, Dick, 2024. "Accelerating peak dating in a dynamic factor Markov-switching model," International Journal of Forecasting, Elsevier, vol. 40(1), pages 313-323.
    14. William A. Barnett & Marcelle Chauvetz & Danilo Leiva-Leonx, 2014. "Real-Time Nowcasting Nominal GDP Under Structural Break," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201313, University of Kansas, Department of Economics, revised Feb 2014.
    15. William A. Barnett & Marcelle Chauvet & Danilo Leiva-Leon, 2014. "Real-Time Nowcasting of Nominal GDP Under Structural Breaks," Staff Working Papers 14-39, Bank of Canada.
    16. Sergey V. Smirnov & Nikolay V. Kondrashov & Anna V. Petronevich, 2017. "Dating Cyclical Turning Points for Russia: Formal Methods and Informal Choices," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 13(1), pages 53-73, May.
    17. Gabriel Pérez-Quiros & Maximo Camacho & Pilar Poncela, 2010. "Green Shoots? Where, when and how?," Working Papers 2010-04, FEDEA.
    18. Martínez-Martín, Jaime & Rusticelli, Elena, 2021. "Keeping track of global trade in real time," International Journal of Forecasting, Elsevier, vol. 37(1), pages 224-236.
    19. Eraslan, Sercan & Nöller, Marvin, 2020. "Recession probabilities falling from the STARs," Discussion Papers 08/2020, Deutsche Bundesbank.
    20. Barnett, William A. & Chauvet, Marcelle & Leiva-Leon, Danilo, 2016. "Real-time nowcasting of nominal GDP with structural breaks," Journal of Econometrics, Elsevier, vol. 191(2), pages 312-324.

    More about this item

    Keywords

    Business cycles; Output growth; Time series;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:8866. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.cepr.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.