Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/bde/wpaper/2138.html
   My bibliography  Save this paper

Do inflation expectations improve model-based inflation Forecasts?

Author

Listed:
  • Marta Bañbura

    (European Central Bank)

  • Danilo Leiva-León

    (Banco de España)

  • Jan-Oliver Menz

    (Deutsche Bundesbank)

Abstract
Those of professional forecasters do. For a wide range of time series models for the euro area and its member states we find a higher average forecast accuracy of models that incorporate information on inflation expectations from the ECB’s SPF and Consensus Economics compared to their counterparts that do not. The gains in forecast accuracy from incorporating inflation expectations are typically not large but significant in some periods. Both short- and long-term expectations provide useful information. By contrast, incorporating expectations derived from financial market prices or those of firms and households does not lead to systematic improvements in forecast performance. Individual models we consider are typically better than univariate benchmarks but for the euro area the professional forecasters are more accurate, especially in recent years (not always for the countries). The analysis is undertaken for headline inflation and inflation excluding energy and food and both point and density forecast are evaluated using real-time data vintages over 2001-2019.

Suggested Citation

  • Marta Bañbura & Danilo Leiva-León & Jan-Oliver Menz, 2021. "Do inflation expectations improve model-based inflation Forecasts?," Working Papers 2138, Banco de España.
  • Handle: RePEc:bde:wpaper:2138
    as

    Download full text from publisher

    File URL: https://www.bde.es/f/webbde/SES/Secciones/Publicaciones/PublicacionesSeriadas/DocumentosTrabajo/21/Files/dt2138e.pdf
    File Function: First version, October 2021
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Christine Garnier & Elmar Mertens & Edward Nelson, 2015. "Trend Inflation in Advanced Economies," International Journal of Central Banking, International Journal of Central Banking, vol. 11(4), pages 65-136, September.
    2. Bańbura, Marta & Bobeica, Elena, 2023. "Does the Phillips curve help to forecast euro area inflation?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 364-390.
    3. Pär Stockhammar & Pär Österholm, 2018. "Do inflation expectations granger cause inflation?," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 35(2), pages 403-431, August.
    4. Clark, Todd E. & Doh, Taeyoung, 2014. "Evaluating alternative models of trend inflation," International Journal of Forecasting, Elsevier, vol. 30(3), pages 426-448.
    5. Friedrich, Christian, 2016. "Global inflation dynamics in the post-crisis period: What explains the puzzles?," Economics Letters, Elsevier, vol. 142(C), pages 31-34.
    6. Ganics, Gergely & Odendahl, Florens, 2021. "Bayesian VAR forecasts, survey information, and structural change in the euro area," International Journal of Forecasting, Elsevier, vol. 37(2), pages 971-999.
    7. Moretti, Laura & Onorante, Luca & Zakipour-Saber, Shayan, 2019. "Phillips curves in the euro area," Research Technical Papers 8/RT/19, Central Bank of Ireland.
    8. Olivier Coibion & Yuriy Gorodnichenko, 2015. "Is the Phillips Curve Alive and Well after All? Inflation Expectations and the Missing Disinflation," American Economic Journal: Macroeconomics, American Economic Association, vol. 7(1), pages 197-232, January.
    9. Domenico Giannone & Jérôme Henry & Magdalena Lalik & Michele Modugno, 2012. "An Area-Wide Real-Time Database for the Euro Area," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1000-1013, November.
    10. Clements, Michael P., 2018. "Are macroeconomic density forecasts informative?," International Journal of Forecasting, Elsevier, vol. 34(2), pages 181-198.
    11. Marek Jarociński & Michele Lenza, 2018. "An Inflation‐Predicting Measure of the Output Gap in the Euro Area," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(6), pages 1189-1224, September.
    12. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    13. Joshua C. C. Chan, 2018. "Specification tests for time-varying parameter models with stochastic volatility," Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 807-823, September.
    14. Elmar Mertens, 2016. "Measuring the Level and Uncertainty of Trend Inflation," The Review of Economics and Statistics, MIT Press, vol. 98(5), pages 950-967, December.
    15. Bańbura, Marta & Giannone, Domenico & Lenza, Michele, 2015. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," International Journal of Forecasting, Elsevier, vol. 31(3), pages 739-756.
    16. Michael P. Clements, 2014. "Forecast Uncertainty- Ex Ante and Ex Post : U.S. Inflation and Output Growth," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 206-216, April.
    17. Timothy Cogley & Giorgio E. Primiceri & Thomas J. Sargent, 2010. "Inflation-Gap Persistence in the US," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(1), pages 43-69, January.
    18. Joshua C.C. Chan & Yong Song, 2018. "Measuring Inflation Expectations Uncertainty Using High‐Frequency Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(6), pages 1139-1166, September.
    19. Bobeica, Elena & Sokol, Andrej, 2019. "Drivers of underlying inflation in the euro area over time: a Phillips curve perspective," Economic Bulletin Articles, European Central Bank, vol. 4.
    20. Ricardo Nunes, 2010. "Inflation Dynamics: The Role of Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(6), pages 1161-1172, September.
    21. Marta Banbura & Andries van Vlodrop, 2018. "Forecasting with Bayesian Vector Autoregressions with Time Variation in the Mean," Tinbergen Institute Discussion Papers 18-025/IV, Tinbergen Institute.
    22. Joshua C.C. Chan & Todd E. Clark & Gary Koop, 2018. "A New Model of Inflation, Trend Inflation, and Long‐Run Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(1), pages 5-53, February.
    23. Ciccarelli, Matteo & Osbat, Chiara, 2017. "Low inflation in the euro area: Causes and consequences," Occasional Paper Series 181, European Central Bank.
    24. Arnoud Stevens & Joris Wauters, 2021. "Is euro area lowflation here to stay? Insights from a time‐varying parameter model with survey data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 566-586, August.
    25. Tallman, Ellis W. & Zaman, Saeed, 2020. "Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy," International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
    26. Fabio Canova & Luca Gambetti, 2010. "Do Expectations Matter? The Great Moderation Revisited," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(3), pages 183-205, July.
    27. Fabian Krüger & Todd E. Clark & Francesco Ravazzolo, 2017. "Using Entropic Tilting to Combine BVAR Forecasts With External Nowcasts," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 470-485, July.
    28. Ang, Andrew & Bekaert, Geert & Wei, Min, 2007. "Do macro variables, asset markets, or surveys forecast inflation better?," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
    29. repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
    30. Magdalena Grothe & Aidan Meyler, 2018. "Inflation Forecasts: Are Market-Based and Survey-Based Measures Informative?," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 9(1), pages 171-188, January.
    31. Carriero, Andrea & Clark, Todd E. & Marcellino, Massimiliano, 2019. "Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors," Journal of Econometrics, Elsevier, vol. 212(1), pages 137-154.
    32. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    33. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    34. Álvarez, Luis J. & Correa-López, Mónica, 2020. "Inflation expectations in euro area Phillips curves," Economics Letters, Elsevier, vol. 195(C).
    35. Bańbura, Marta & Brenna, Federica & Paredes, Joan & Ravazzolo, Francesco, 2021. "Combining Bayesian VARs with survey density forecasts: does it pay off?," Working Paper Series 2543, European Central Bank.
    36. Timothy Cogley & Thomas J. Sargent, 2002. "Evolving Post-World War II US Inflation Dynamics," NBER Chapters, in: NBER Macroeconomics Annual 2001, Volume 16, pages 331-388, National Bureau of Economic Research, Inc.
    37. Christoph Frey & Frieder Mokinski, 2016. "Forecasting with Bayesian Vector Autoregressions Estimated Using Professional Forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(6), pages 1083-1099, September.
    38. Marco Del Negro & Domenico Giannone & Marc P. Giannoni & Andrea Tambalotti, 2017. "Safety, Liquidity, and the Natural Rate of Interest," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 48(1 (Spring), pages 235-316.
    39. Galvão, Ana Beatriz & Garratt, Anthony & Mitchell, James, 2021. "Does judgment improve macroeconomic density forecasts?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1247-1260.
    40. Angelini, Elena & Bokan, Nikola & Christoffel, Kai & Ciccarelli, Matteo & Zimic, Srečko, 2019. "Introducing ECB-BASE: The blueprint of the new ECB semi-structural model for the euro area," Working Paper Series 2315, European Central Bank.
    41. Jonathan H. Wright, 2013. "Evaluating Real‐Time Var Forecasts With An Informative Democratic Prior," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 762-776, August.
    42. Todd E. Clark, 2011. "Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 327-341, July.
    43. Raffaella Giacomini & Barbara Rossi, 2010. "Forecast comparisons in unstable environments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 595-620.
    44. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    45. Cecchetti, Stephen & Feroli, Michael & Hooper, Peter & Kashyap, Anil & Schoenholtz, Kermit L., 2017. "Deflating Inflation Expectations: The Implications of Inflation’s Simple Dynamics," CEPR Discussion Papers 11925, C.E.P.R. Discussion Papers.
    46. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
    47. Coenen, Günter & Karadi, Peter & Schmidt, Sebastian & Warne, Anders, 2018. "The New Area-Wide Model II: an extended version of the ECB’s micro-founded model for forecasting and policy analysis with a financial sector," Working Paper Series 2200, European Central Bank.
    48. Raïsa Basselier & David de Antonio Liedo & Jana Jonckheere & Geert Langenus, 2018. "Can inflation expectations in business or consumer surveys improve inflation forecasts?," Working Paper Research 348, National Bank of Belgium.
    49. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    50. Mattias Villani, 2009. "Steady-state priors for vector autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 630-650.
    51. Fagan, Gabriel & Henry, Jerome & Mestre, Ricardo, 2005. "An area-wide model for the euro area," Economic Modelling, Elsevier, vol. 22(1), pages 39-59, January.
    52. Joshua C. C. Chan, 2019. "Large Bayesian vector autoregressions," CAMA Working Papers 2019-19, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    53. Andrew Atkeson & Lee E. Ohanian, 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 25(Win), pages 2-11.
    54. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huber, Florian & Onorante, Luca & Pfarrhofer, Michael, 2024. "Forecasting euro area inflation using a huge panel of survey expectations," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1042-1054.
    2. Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
    3. Burban, Valentin & De Backer, Bruno & Vladu, Andreea Liliana, 2024. "Inflation (de-)anchoring in the euro area," Working Paper Series 2964, European Central Bank.
    4. Valentin Burban & Bruno De Backer & Andreea Liliana Vladu, 2024. "Inflation (De-)Anchoring in the Euro Area," Working papers 965, Banque de France.
    5. Baumann, Ursel & Darracq Pariès, Matthieu & Westermann, Thomas & Riggi, Marianna & Bobeica, Elena & Meyler, Aidan & Böninghausen, Benjamin & Fritzer, Friedrich & Trezzi, Riccardo & Jonckheere, Jana & , 2021. "Inflation expectations and their role in Eurosystem forecasting," Occasional Paper Series 264, European Central Bank.
    6. Galdi, Giulio & Casarin, Roberto & Ferrari, Davide & Fezzi, Carlo & Ravazzolo, Francesco, 2023. "Nowcasting industrial production using linear and non-linear models of electricity demand," Energy Economics, Elsevier, vol. 126(C).
    7. Luigi Bonatti, & Andrea Fracasso & Roberto Tamborini, 2021. "What to expect from inflation expectations: theory, empirics and policy issues," DEM Working Papers 2022/1, Department of Economics and Management.
    8. Olivier De Bandt & Jean-Charles Bricongne & Julien Denes & Alexandre Dhenin & Annabelle De Gaye & Pierre-Antoine Robert, 2023. "Using the Press to Construct a New Indicator of Inflation Perceptions in France," Working papers 921, Banque de France.
    9. Le Bihan, Hervé & Leiva-Leon, Danilo & Pacce, Matías, 2023. "Underlying inflation and asymmetric risks," Working Paper Series 2848, European Central Bank.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bańbura, Marta & Bobeica, Elena, 2023. "Does the Phillips curve help to forecast euro area inflation?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 364-390.
    2. Bańbura, Marta & Brenna, Federica & Paredes, Joan & Ravazzolo, Francesco, 2021. "Combining Bayesian VARs with survey density forecasts: does it pay off?," Working Paper Series 2543, European Central Bank.
    3. Tallman, Ellis W. & Zaman, Saeed, 2020. "Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy," International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
    4. Baumann, Ursel & Darracq Pariès, Matthieu & Westermann, Thomas & Riggi, Marianna & Bobeica, Elena & Meyler, Aidan & Böninghausen, Benjamin & Fritzer, Friedrich & Trezzi, Riccardo & Jonckheere, Jana & , 2021. "Inflation expectations and their role in Eurosystem forecasting," Occasional Paper Series 264, European Central Bank.
    5. Marta Banbura & Andries van Vlodrop, 2018. "Forecasting with Bayesian Vector Autoregressions with Time Variation in the Mean," Tinbergen Institute Discussion Papers 18-025/IV, Tinbergen Institute.
    6. Ganics, Gergely & Odendahl, Florens, 2021. "Bayesian VAR forecasts, survey information, and structural change in the euro area," International Journal of Forecasting, Elsevier, vol. 37(2), pages 971-999.
    7. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    8. Peter McAdam & Anders Warne, 2024. "Density forecast combinations: The real‐time dimension," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1153-1172, August.
    9. Koester, Gerrit & Lis, Eliza & Nickel, Christiane & Osbat, Chiara & Smets, Frank, 2021. "Understanding low inflation in the euro area from 2013 to 2019: cyclical and structural drivers," Occasional Paper Series 280, European Central Bank.
    10. Marek Jarociński & Michele Lenza, 2018. "An Inflation‐Predicting Measure of the Output Gap in the Euro Area," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(6), pages 1189-1224, September.
    11. Fabian Eser & Peter Karadi & Philip R. Lane & Laura Moretti & Chiara Osbat, 2020. "The Phillips Curve at the ECB," Manchester School, University of Manchester, vol. 88(S1), pages 50-85, September.
    12. Hauzenberger Niko & Huber Florian & Pfarrhofer Michael & Zörner Thomas O., 2021. "Stochastic model specification in Markov switching vector error correction models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-17, April.
    13. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
    14. Andrew B. Martinez, 2020. "Extracting Information from Different Expectations," Working Papers 2020-008, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    15. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    16. Thomas Hasenzagl & Filippo Pellegrino & Lucrezia Reichlin & Giovanni Ricco, 2022. "A Model of the Fed's View on Inflation," The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 686-704, October.
    17. Knut Are Aastveit & Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2017. "Have Standard VARS Remained Stable Since the Crisis?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(5), pages 931-951, August.
    18. Murasawa Yasutomo, 2022. "Bayesian multivariate Beveridge–Nelson decomposition of I(1) and I(2) series with cointegration," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 26(3), pages 387-415, June.
    19. Bobeica, Elena & Hartwig, Benny, 2021. "The COVID-19 shock and challenges for time series models," Working Paper Series 2558, European Central Bank.
    20. Philippe Goulet Coulombe, 2022. "A Neural Phillips Curve and a Deep Output Gap," Working Papers 22-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.

    More about this item

    Keywords

    forecasting; inflation; inflation expectations; Phillips curve; bayesian VAR;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bde:wpaper:2138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ángel Rodríguez. Electronic Dissemination of Information Unit. Research Department. Banco de España (email available below). General contact details of provider: https://edirc.repec.org/data/bdegves.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.