Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/azt/cemmap/03-16.html
   My bibliography  Save this paper

Doubly robust uniform confidence band for the conditional average treatment effect function

Author

Listed:
  • Sokbae (Simon) Lee
  • Ryo Okui
  • Yoon-Jae Whang
Abstract
In this paper, we propose a doubly robust method to present the heterogeneity of the average treatment e ffect with respect to observed covariates of interest. We consider a situation where a large number of covariates are needed for identifying the average treatment eff ect but the covariates of interest for analyzing heterogeneity are of much lower dimension. Our proposed estimator is doubly robust and avoids the curse of dimensionality. We propose a uniform confidence band that is easy to compute, and we illustrate its usefulness via Monte Carlo experiments and an application to the eff ects of smoking on birth weights.

Suggested Citation

  • Sokbae (Simon) Lee & Ryo Okui & Yoon-Jae Whang, 2016. "Doubly robust uniform confidence band for the conditional average treatment effect function," CeMMAP working papers 03/16, Institute for Fiscal Studies.
  • Handle: RePEc:azt:cemmap:03/16
    DOI: 10.1920/wp.cem.2016.0316
    as

    Download full text from publisher

    File URL: https://www.cemmap.ac.uk/wp-content/uploads/2020/08/CWP0316.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.1920/wp.cem.2016.0316?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    2. V. Chernozhukov & I. Fernández-Val & A. Galichon, 2009. "Improving point and interval estimators of monotone functions by rearrangement," Biometrika, Biometrika Trust, vol. 96(3), pages 559-575.
    3. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    4. Cattaneo, Matias D., 2010. "Efficient semiparametric estimation of multi-valued treatment effects under ignorability," Journal of Econometrics, Elsevier, vol. 155(2), pages 138-154, April.
    5. Sokbae Lee & Oliver Linton & Yoon-Jae Whang, 2009. "Testing for Stochastic Monotonicity," Econometrica, Econometric Society, vol. 77(2), pages 585-602, March.
    6. Abrevaya, Jason & Dahl, Christian M, 2008. "The Effects of Birth Inputs on Birthweight," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 379-397.
    7. Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022. "Locally Robust Semiparametric Estimation," Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
    8. Jason Abrevaya, 2006. "Estimating the effect of smoking on birth outcomes using a matched panel data approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(4), pages 489-519, May.
    9. S. Derya Uysal, 2015. "Doubly Robust Estimation of Causal Effects with Multivalued Treatments: An Application to the Returns to Schooling," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(5), pages 763-786, August.
    10. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    11. Abadie, Alberto, 2003. "Semiparametric instrumental variable estimation of treatment response models," Journal of Econometrics, Elsevier, vol. 113(2), pages 231-263, April.
    12. van der Laan Mark J., 2006. "Statistical Inference for Variable Importance," The International Journal of Biostatistics, De Gruyter, vol. 2(1), pages 1-33, February.
    13. Matias D. Cattaneo, 2010. "multi-valued treatment effects," The New Palgrave Dictionary of Economics,, Palgrave Macmillan.
    14. Tan, Zhiqiang, 2006. "Regression and Weighting Methods for Causal Inference Using Instrumental Variables," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1607-1618, December.
    15. Douglas Almond & Kenneth Y. Chay & David S. Lee, 2005. "The Costs of Low Birth Weight," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(3), pages 1031-1083.
    16. Uysal, S. Derya, 2013. "Doubly Robust Estimation of Causal Effects with Multivalued Treatments," Economics Series 297, Institute for Advanced Studies.
    17. Jason Abrevaya & Yu-Chin Hsu & Robert P. Lieli, 2015. "Estimating Conditional Average Treatment Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 485-505, October.
    18. Wooldridge, Jeffrey M., 2007. "Inverse probability weighted estimation for general missing data problems," Journal of Econometrics, Elsevier, vol. 141(2), pages 1281-1301, December.
    19. Mary Beth Walker & Erdal Tekin & Sally Wallace, 2009. "Teen Smoking and Birth Outcomes," Southern Economic Journal, John Wiley & Sons, vol. 75(3), pages 892-907, January.
    20. Poterba, James M. & Venti, Steven F. & Wise, David A., 1995. "Do 401(k) contributions crowd out other personal saving?," Journal of Public Economics, Elsevier, vol. 58(1), pages 1-32, September.
    21. Peter Hall & Joel L. Horowitz, 2013. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers CWP29/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    22. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, April.
    23. Almond, Douglas & Currie, Janet, 2011. "Human Capital Development before Age Five," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 15, pages 1315-1486, Elsevier.
    24. Soohyung Lee & Azeem M. Shaikh, 2014. "Multiple Testing And Heterogeneous Treatment Effects: Re‐Evaluating The Effect Of Progresa On School Enrollment," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(4), pages 612-626, June.
    25. Konakov, V. D. & Piterbarg, V. I., 1984. "On the convergence rate of maximal deviation distribution for kernel regression estimates," Journal of Multivariate Analysis, Elsevier, vol. 15(3), pages 279-294, December.
    26. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," Papers 1212.6906, arXiv.org, revised Jan 2018.
    27. Zhiqiang Tan, 2010. "Bounded, efficient and doubly robust estimation with inverse weighting," Biometrika, Biometrika Trust, vol. 97(3), pages 661-682.
    28. Paula Veiga & Ronald P. Wilder, 2006. "Maternal smoking during pregnancy and birthweight - A propensity score matching approach," NIMA Working Papers 32, Núcleo de Investigação em Microeconomia Aplicada (NIMA), Universidade do Minho.
    29. Glynn, Adam N. & Quinn, Kevin M., 2010. "An Introduction to the Augmented Inverse Propensity Weighted Estimator," Political Analysis, Cambridge University Press, vol. 18(1), pages 36-56, January.
    30. Elizabeth L. Ogburn & Andrea Rotnitzky & James M. Robins, 2015. "Doubly robust estimation of the local average treatment effect curve," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 373-396, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jason Abrevaya & Yu-Chin Hsu & Robert P. Lieli, 2015. "Estimating Conditional Average Treatment Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 485-505, October.
    2. Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers CWP77/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Rahul Singh & Liyuan Xu & Arthur Gretton, 2020. "Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves," Papers 2010.04855, arXiv.org, revised Oct 2022.
    4. Difang Huang & Jiti Gao & Tatsushi Oka, 2022. "Semiparametric Single-Index Estimation for Average Treatment Effects," Papers 2206.08503, arXiv.org, revised Apr 2024.
    5. Phillip Heiler & Michael C. Knaus, 2021. "Effect or Treatment Heterogeneity? Policy Evaluation with Aggregated and Disaggregated Treatments," Papers 2110.01427, arXiv.org, revised Aug 2023.
    6. Matias D Cattaneo & Michael Jansson & Xinwei Ma, 2019. "Two-Step Estimation and Inference with Possibly Many Included Covariates," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(3), pages 1095-1122.
    7. A. Belloni & V. Chernozhukov & I. Fernández‐Val & C. Hansen, 2017. "Program Evaluation and Causal Inference With High‐Dimensional Data," Econometrica, Econometric Society, vol. 85, pages 233-298, January.
    8. Słoczyński, Tymon & Wooldridge, Jeffrey M., 2018. "A General Double Robustness Result For Estimating Average Treatment Effects," Econometric Theory, Cambridge University Press, vol. 34(1), pages 112-133, February.
    9. Long, Wenjin & Pang, Xiaopeng & Dong, Xiao-yuan & Zeng, Junxia, 2020. "Is rented accommodation a good choice for primary school students' academic performance? – Evidence from rural China," China Economic Review, Elsevier, vol. 62(C).
    10. Michael Zimmert & Michael Lechner, 2019. "Nonparametric estimation of causal heterogeneity under high-dimensional confounding," Papers 1908.08779, arXiv.org.
    11. Zongwu Cai & Ying Fang & Ming Lin & Shengfang Tang, 2020. "Inferences for Partially Conditional Quantile Treatment Effect Model," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202005, University of Kansas, Department of Economics, revised Feb 2020.
    12. Garbero, Alessandra & Songsermsawas, Tisorn, 2016. "Impact of modern irrigation on household production and welfare outcomes: Evidence from the PASIDP project in Ethiopia," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235949, Agricultural and Applied Economics Association.
    13. Joachim Binam & Frank Place & Antoine Kalinganire & Sigue Hamade & Moussa Boureima & Abasse Tougiani & Joseph Dakouo & Bayo Mounkoro & Sanogo Diaminatou & Marcel Badji & Mouhamadou Diop & Andre Babou , 2015. "Effects of farmer managed natural regeneration on livelihoods in semi-arid West Africa," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(4), pages 543-575, October.
    14. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    15. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    16. Sungwon Lee, 2021. "Partial Identification and Inference for Conditional Distributions of Treatment Effects," Papers 2108.00723, arXiv.org, revised Nov 2023.
    17. Tobias A. Jopp, 2018. "On the economics of forced labour. Did the employment of Prisoners-of-War depress German coal mining productivity in World War I?," Working Papers 0132, European Historical Economics Society (EHES).
    18. Xinwei Ma & Jingshen Wang, 2018. "Robust Inference Using Inverse Probability Weighting," Papers 1810.11397, arXiv.org, revised May 2019.
    19. Shengfang Tang & Zongwu Cai & Ying Fang & Ming Lin, 2020. "A New Quantile Treatment Effect Model for Studying Smoking Effect on Birth Weight During Mother's Pregnancy," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202003, University of Kansas, Department of Economics, revised Feb 2020.
    20. Huber, Martin & Wüthrich, Kaspar, 2017. "Evaluating local average and quantile treatment effects under endogeneity based on instruments: a review," FSES Working Papers 479, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:azt:cemmap:03/16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dermot Watson (email available below). General contact details of provider: https://edirc.repec.org/data/ifsssuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.