Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2402.07435.html
   My bibliography  Save this paper

Analyzing Currency Fluctuations: A Comparative Study of GARCH, EWMA, and IV Models for GBP/USD and EUR/GBP Pairs

Author

Listed:
  • Narayan Tondapu
Abstract
In this study, we examine the fluctuation in the value of the Great Britain Pound (GBP). We focus particularly on its relationship with the United States Dollar (USD) and the Euro (EUR) currency pairs. Utilizing data from June 15, 2018, to June 15, 2023, we apply various mathematical models to assess their effectiveness in predicting the 20-day variation in the pairs' daily returns. Our analysis involves the implementation of Exponentially Weighted Moving Average (EWMA), Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models, and Implied Volatility (IV) models. To evaluate their performance, we compare the accuracy of their predictions using Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) metrics. We delve into the intricacies of GARCH models, examining their statistical characteristics when applied to the provided dataset. Our findings suggest the existence of asymmetric returns in the EUR/GBP pair, while such evidence is inconclusive for the GBP/USD pair. Additionally, we observe that GARCH-type models better fit the data when assuming residuals follow a standard t-distribution rather than a standard normal distribution. Furthermore, we investigate the efficacy of different forecasting techniques within GARCH-type models. Comparing rolling window forecasts to expanding window forecasts, we find no definitive superiority in either approach across the tested scenarios. Our experiments reveal that for the GBP/USD pair, the most accurate volatility forecasts stem from the utilization of GARCH models employing a rolling window methodology. Conversely, for the EUR/GBP pair, optimal forecasts are derived from GARCH models and Ordinary Least Squares (OLS) models incorporating the annualized implied volatility of the exchange rate as an independent variable.

Suggested Citation

  • Narayan Tondapu, 2024. "Analyzing Currency Fluctuations: A Comparative Study of GARCH, EWMA, and IV Models for GBP/USD and EUR/GBP Pairs," Papers 2402.07435, arXiv.org.
  • Handle: RePEc:arx:papers:2402.07435
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2402.07435
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    2. Gita Persand & Chris Brooks, 2003. "Volatility forecasting for risk management," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(1), pages 1-22.
    3. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    4. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Wang, Jianxin & Yang, Minxian, 2009. "Asymmetric volatility in the foreign exchange markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(4), pages 597-615, October.
    7. Hsieh, David A, 1989. "Modeling Heteroscedasticity in Daily Foreign-Exchange Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(3), pages 307-317, July.
    8. Samar Wazir & Gautam Siddharth Kashyap & Karan Malik & Alexander E. I. Brownlee, 2023. "Predicting the Infection Level of COVID-19 Virus Using Normal Distribution-Based Approximation Model and PSO," Springer Optimization and Its Applications, in: Zakia Hammouch & Mohamed Lahby & Dumitru Baleanu (ed.), Mathematical Modeling and Intelligent Control for Combating Pandemics, pages 75-91, Springer.
    9. Rabemananjara, R & Zakoian, J M, 1993. "Threshold Arch Models and Asymmetries in Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(1), pages 31-49, Jan.-Marc.
    10. Jie Ding & Nigel Meade, 2010. "Forecasting accuracy of stochastic volatility, GARCH and EWMA models under different volatility scenarios," Applied Financial Economics, Taylor & Francis Journals, vol. 20(10), pages 771-783.
    11. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    12. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    13. Scott, Elton & Tucker, Alan L., 1989. "Predicting currency return volatility," Journal of Banking & Finance, Elsevier, vol. 13(6), pages 839-851, December.
    14. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    15. Amin, Kaushik I & Ng, Victor K, 1997. "Inferring Future Volatility from the Information in Implied Volatility in Eurodollar Options: A New Approach," The Review of Financial Studies, Society for Financial Studies, vol. 10(2), pages 333-367.
    16. Keith Pilbeam & Kjell Langeland, 2015. "Forecasting exchange rate volatility: GARCH models versus implied volatility forecasts," International Economics and Economic Policy, Springer, vol. 12(1), pages 127-142, March.
    17. Mehmet Sahiner, 2022. "Forecasting volatility in Asian financial markets: evidence from recursive and rolling window methods," SN Business & Economics, Springer, vol. 2(10), pages 1-74, October.
    18. Louis Ederington & Jae Ha Lee, 2001. "Intraday Volatility in Interest‐Rate and Foreign‐Exchange Markets: ARCH, Announcement, and Seasonality Effects," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 21(6), pages 517-552, June.
    19. Viviane Naimy & Rim El Khoury & José-María Montero & Jana Souk, 2023. "Post-Brexit exchange rate volatility and its impact on UK exports to eurozone countries: A bounds testing approach," Oeconomia Copernicana, Institute of Economic Research, vol. 14(1), pages 135-168, March.
    20. Hamid, Shaikh A. & Iqbal, Zahid, 2004. "Using neural networks for forecasting volatility of S&P 500 Index futures prices," Journal of Business Research, Elsevier, vol. 57(10), pages 1116-1125, October.
    21. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xekalaki, Evdokia & Degiannakis, Stavros, 2005. "Evaluating volatility forecasts in option pricing in the context of a simulated options market," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 611-629, April.
    2. Hassanniakalager, Arman & Baker, Paul L. & Platanakis, Emmanouil, 2024. "A False Discovery Rate approach to optimal volatility forecasting model selection," International Journal of Forecasting, Elsevier, vol. 40(3), pages 881-902.
    3. Antonakakis, Nikolaos & Darby, Julia, 2012. "Forecasting Volatility in Developing Countries' Nominal Exchange Returns," MPRA Paper 40875, University Library of Munich, Germany.
    4. T. -N. Nguyen & M. -N. Tran & R. Kohn, 2020. "Recurrent Conditional Heteroskedasticity," Papers 2010.13061, arXiv.org, revised Jan 2022.
    5. Kambouroudis, Dimos S. & McMillan, David G., 2015. "Is there an ideal in-sample length for forecasting volatility?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 37(C), pages 114-137.
    6. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    7. Trong‐Nghia Nguyen & Minh‐Ngoc Tran & Robert Kohn, 2022. "Recurrent conditional heteroskedasticity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 1031-1054, August.
    8. Pedro Correia S. Bezerra & Pedro Henrique M. Albuquerque, 2017. "Volatility forecasting via SVR–GARCH with mixture of Gaussian kernels," Computational Management Science, Springer, vol. 14(2), pages 179-196, April.
    9. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    10. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
    11. Athanasia Gavala & Nikolay Gospodinov & Deming Jiang, 2006. "Forecasting volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 381-400.
    12. Chao Wang & Richard Gerlach, 2021. "A Bayesian realized threshold measurement GARCH framework for financial tail risk forecasting," Papers 2106.00288, arXiv.org, revised Oct 2022.
    13. Mehmet Sahiner, 2022. "Forecasting volatility in Asian financial markets: evidence from recursive and rolling window methods," SN Business & Economics, Springer, vol. 2(10), pages 1-74, October.
    14. Huang, Alex YiHou & Peng, Sheng-Pen & Li, Fangjhy & Ke, Ching-Jie, 2011. "Volatility forecasting of exchange rate by quantile regression," International Review of Economics & Finance, Elsevier, vol. 20(4), pages 591-606, October.
    15. Gavriilidis, Konstantinos & Kambouroudis, Dimos S. & Tsakou, Katerina & Tsouknidis, Dimitris A., 2018. "Volatility forecasting across tanker freight rates: The role of oil price shocks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 376-391.
    16. Zhao, Yixiu & Upreti, Vineet & Cai, Yuzhi, 2021. "Stock returns, quantile autocorrelation, and volatility forecasting," International Review of Financial Analysis, Elsevier, vol. 73(C).
    17. Min Liu & Chien‐Chiang Lee & Wei‐Chong Choo, 2021. "An empirical study on the role of trading volume and data frequency in volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 792-816, August.
    18. Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013. "Econometric modeling of exchange rate volatility and jumps," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427, Edward Elgar Publishing.
    19. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    20. Gatfaoui, Hayette, 2013. "Translating financial integration into correlation risk: A weekly reporting's viewpoint for the volatility behavior of stock markets," Economic Modelling, Elsevier, vol. 30(C), pages 776-791.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2402.07435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.