Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1711.10031.html
   My bibliography  Save this paper

Constructive Identification of Heterogeneous Elasticities in the Cobb-Douglas Production Function

Author

Listed:
  • Tong Li
  • Yuya Sasaki
Abstract
This paper presents the identification of heterogeneous elasticities in the Cobb-Douglas production function. The identification is constructive with closed-form formulas for the elasticity with respect to each input for each firm. We propose that the flexible input cost ratio plays the role of a control function under "non-collinear heterogeneity" between elasticities with respect to two flexible inputs. The ex ante flexible input cost share can be used to identify the elasticities with respect to flexible inputs for each firm. The elasticities with respect to labor and capital can be subsequently identified for each firm under the timing assumption admitting the functional independence.

Suggested Citation

  • Tong Li & Yuya Sasaki, 2017. "Constructive Identification of Heterogeneous Elasticities in the Cobb-Douglas Production Function," Papers 1711.10031, arXiv.org.
  • Handle: RePEc:arx:papers:1711.10031
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1711.10031
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jan De Loecker & Frederic Warzynski, 2012. "Markups and Firm-Level Export Status," American Economic Review, American Economic Association, vol. 102(6), pages 2437-2471, October.
    2. Jan De Loecker & Pinelopi K. Goldberg & Amit K. Khandelwal & Nina Pavcnik, 2016. "Prices, Markups, and Trade Reform," Econometrica, Econometric Society, vol. 84, pages 445-510, March.
    3. Johannes van Biesebroeck, 2003. "Productivity Dynamics with Technology Choice: An Application to Automobile Assembly," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(1), pages 167-198.
    4. Olley, G Steven & Pakes, Ariel, 1996. "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, Econometric Society, vol. 64(6), pages 1263-1297, November.
    5. Daniel A. Ackerberg & Kevin Caves & Garth Frazer, 2015. "Identification Properties of Recent Production Function Estimators," Econometrica, Econometric Society, vol. 83, pages 2411-2451, November.
    6. Paul L. E. Grieco & Shengyu Li & Hongsong Zhang, 2016. "Production Function Estimation With Unobserved Input Price Dispersion," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 57, pages 665-690, May.
    7. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    8. Paul Schrimpf & Michio Suzuki & Hiroyuki Kasahara, 2015. "Identification and Estimation of Production Function with Unobserved Heterogeneity," 2015 Meeting Papers 924, Society for Economic Dynamics.
    9. Ackerberg, Daniel & Lanier Benkard, C. & Berry, Steven & Pakes, Ariel, 2007. "Econometric Tools for Analyzing Market Outcomes," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 63, Elsevier.
    10. Amit Gandhi & Salvador Navarro & David Rivers, 2017. "How Heterogeneous is Productivity? A Comparison of Gross Output and Value Added," University of Western Ontario, Centre for Human Capital and Productivity (CHCP) Working Papers 201727, University of Western Ontario, Centre for Human Capital and Productivity (CHCP).
    11. Ulrich Doraszelski & Jordi Jaumandreu, 2013. "R&D and Productivity: Estimating Endogenous Productivity," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(4), pages 1338-1383.
    12. Hu, Yingyao & Huang, Guofang & Sasaki, Yuya, 2020. "Estimating production functions with robustness against errors in the proxy variables," Journal of Econometrics, Elsevier, vol. 215(2), pages 375-398.
    13. James Levinsohn & Amil Petrin, 2003. "Estimating Production Functions Using Inputs to Control for Unobservables," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(2), pages 317-341.
    14. Wooldridge, Jeffrey M., 2009. "On estimating firm-level production functions using proxy variables to control for unobservables," Economics Letters, Elsevier, vol. 104(3), pages 112-114, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul Schrimpf & Michio Suzuki & Hiroyuki Kasahara, 2015. "Identification and Estimation of Production Function with Unobserved Heterogeneity," 2015 Meeting Papers 924, Society for Economic Dynamics.
    2. Aguiar, Victor H. & Kashaev, Nail & Allen, Roy, 2023. "Prices, profits, proxies, and production," Journal of Econometrics, Elsevier, vol. 235(2), pages 666-693.
    3. Ming Li, 2021. "Identification and Estimation in a Time-Varying Endogenous Random Coefficient Panel Data Model," Papers 2110.00982, arXiv.org, revised Nov 2024.
    4. Yu Hao & Hiroyuki Kasahara, 2022. "Testing the Number of Components in Finite Mixture Normal Regression Model with Panel Data," Papers 2210.02824, arXiv.org, revised Jun 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Tong & Sasaki, Yuya, 2024. "Identification of heterogeneous elasticities in gross-output production functions," Journal of Econometrics, Elsevier, vol. 238(2).
    2. Emir Malikov & Shunan Zhao & Jingfang Zhang, 2024. "A System Approach to Structural Identification of Production Functions with Multi-Dimensional Productivity," Advances in Econometrics, in: Essays in Honor of Subal Kumbhakar, volume 46, pages 211-263, Emerald Group Publishing Limited.
    3. Martin Gornig & Alexander Schiersch, 2019. "Agglomeration Economies and the Firm TFP: Different Effects across Industries," Discussion Papers of DIW Berlin 1788, DIW Berlin, German Institute for Economic Research.
    4. Emir Malikov & Jingfang Zhang & Shunan Zhao & Subal C. Kumbhakar, 2023. "Accounting for Cross-Location Technological Heterogeneity in the Measurement of Operations Efficiency and Productivity," Papers 2302.13430, arXiv.org.
    5. Zhang, Hongsong, 2019. "Non-neutral technology, firm heterogeneity, and labor demand," Journal of Development Economics, Elsevier, vol. 140(C), pages 145-168.
    6. Jamil, Nida & Chaudhry, Theresa Thompson & Chaudhry, Azam, 2022. "Trading textiles along the new silk route: The impact on Pakistani firms of gaining market access to China," Journal of Development Economics, Elsevier, vol. 158(C).
    7. Kritikos, Alexander S. & Schiersch, Alexander & Stiel, Caroline, 2021. "The Productivity Puzzle in Business Services," IZA Discussion Papers 14610, Institute of Labor Economics (IZA).
    8. van Heuvelen, Gerrit Hugo & Bettendorf, Leon & Meijerink, Gerdien, 2021. "Markups in a dual labour market: The case of the Netherlands," International Journal of Industrial Organization, Elsevier, vol. 77(C).
    9. Alexander S. Kritikos & Alexander Schiersch & Caroline Stiel, 2022. "The productivity shock in business services," Small Business Economics, Springer, vol. 59(3), pages 1273-1299, October.
    10. Ioannis Bournakis & Mike Tsionas, 2024. "A Non‐parametric Estimation of Productivity with Idiosyncratic and Aggregate Shocks: The Role of Research and Development (R&D) and Corporate Tax," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(3), pages 641-671, June.
    11. Hu, Yingyao & Huang, Guofang & Sasaki, Yuya, 2020. "Estimating production functions with robustness against errors in the proxy variables," Journal of Econometrics, Elsevier, vol. 215(2), pages 375-398.
    12. Lutz, Benjamin Johannes, 2016. "Emissions trading and productivity: Firm-level evidence from German manufacturing," ZEW Discussion Papers 16-067, ZEW - Leibniz Centre for European Economic Research.
    13. Paul Schrimpf & Michio Suzuki & Hiroyuki Kasahara, 2015. "Identification and Estimation of Production Function with Unobserved Heterogeneity," 2015 Meeting Papers 924, Society for Economic Dynamics.
    14. Daniel A. Ackerberg & Kevin Caves & Garth Frazer, 2015. "Identification Properties of Recent Production Function Estimators," Econometrica, Econometric Society, vol. 83, pages 2411-2451, November.
    15. Maican, Florin & Orth, Matilda, 2021. "Determinants of economies of scope in retail," International Journal of Industrial Organization, Elsevier, vol. 75(C).
    16. Richter, Philipp M. & Schiersch, Alexander, 2017. "CO2 emission intensity and exporting: Evidence from firm-level data," European Economic Review, Elsevier, vol. 98(C), pages 373-391.
    17. Mertens, Matthias, 2019. "Micro-mechanisms behind declining labour shares: Market power, production processes, and global competition," IWH-CompNet Discussion Papers 3/2019, Halle Institute for Economic Research (IWH).
    18. Lenzu, Simone & Manaresi, Francesco, 2018. "Do Marginal Products Differ from User Costs? Micro-Level Evidence from Italian Firms," Working Papers 276, The University of Chicago Booth School of Business, George J. Stigler Center for the Study of the Economy and the State.
    19. Simone Lenzu & Francesco Manaresi, 2019. "Sources and implications of resource misallocation: new evidence from firm-level marginal products and user costs," Questioni di Economia e Finanza (Occasional Papers) 485, Bank of Italy, Economic Research and International Relations Area.
    20. Grieco, Paul & Pinkse, Joris & Slade, Margaret, 2018. "Brewed in North America: Mergers, marginal costs, and efficiency," International Journal of Industrial Organization, Elsevier, vol. 59(C), pages 24-65.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1711.10031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.