(This abstract was borrowed from another version of this item.)"> (This abstract was borrowed from another version of this item.)">
Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/aiz/louvad/2018020.html
   My bibliography  Save this paper

Improving Finite Sample Approximation by Central Limit Theorems for DEA and FDH efficiency scores

Author

Listed:
  • Simar, Leopold
  • Zelenyuk, Valentin
Abstract
We propose an improvement of the finite sample approximation of the central limit theorems (CLTs) that were recently derived for statistics involving production efficiency scores estimated via Data Envelopment Analysis (DEA) or Free Disposal Hull (FDH) approaches. The improvement is very easy to implement since it involves a simple correction of the already employed statistics without any additional computational burden and preserves the original asymptotic results such as consistency and asymptotic normality. The proposed approach persistently showed improvement in all the scenarios that we tried in various Monte-Carlo experiments, especially for relatively small samples or relatively large dimensions (measured by total number of inputs and outputs) of the underlying production model. This approach therefore is expected to be valuable (and at almost no additional computational costs) for practitioners wishing to perform statistical inference about production efficiency using DEA or FDH approaches.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Simar, Leopold & Zelenyuk, Valentin, 2018. "Improving Finite Sample Approximation by Central Limit Theorems for DEA and FDH efficiency scores," LIDAM Discussion Papers ISBA 2018020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvad:2018020
    as

    Download full text from publisher

    File URL: https://dial.uclouvain.be/pr/boreal/fr/object/boreal%3A201792/datastream/PDF_01/view
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Léopold Simar & Paul Wilson, 2011. "Inference by the m out of n bootstrap in nonparametric frontier models," Journal of Productivity Analysis, Springer, vol. 36(1), pages 33-53, August.
    2. Alois Kneip & Léopold Simar & Paul W. Wilson, 2016. "Testing Hypotheses in Nonparametric Models of Production," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 435-456, July.
    3. Kneip, Alois & Simar, Léopold & Wilson, Paul W., 2021. "Inference In Dynamic, Nonparametric Models Of Production: Central Limit Theorems For Malmquist Indices," Econometric Theory, Cambridge University Press, vol. 37(3), pages 537-572, June.
    4. Olesen, O. B., 1995. "Some unsolved problems in data envelopment analysis: A survey," International Journal of Production Economics, Elsevier, vol. 39(1-2), pages 5-36, April.
    5. Simar, Leopold & Wilson, Paul, 2018. "Technical, Allocative and Overall Efficiency: Inference and Hypothesis Testing," LIDAM Discussion Papers ISBA 2018018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Forsund, Finn R. & Sarafoglou, Nikias, 2005. "The tale of two research communities: The diffusion of research on productive efficiency," International Journal of Production Economics, Elsevier, vol. 98(1), pages 17-40, October.
    7. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    8. Atici, Kazim Baris & Podinovski, Victor V., 2015. "Using data envelopment analysis for the assessment of technical efficiency of units with different specialisations: An application to agriculture," Omega, Elsevier, vol. 54(C), pages 72-83.
    9. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    10. Aparicio, Juan & Pastor, Jesus T., 2014. "Closest targets and strong monotonicity on the strongly efficient frontier in DEA," Omega, Elsevier, vol. 44(C), pages 51-57.
    11. Kneip, Alois & Simar, Léopold & Wilson, Paul W., 2015. "When Bias Kills The Variance: Central Limit Theorems For Dea And Fdh Efficiency Scores," Econometric Theory, Cambridge University Press, vol. 31(2), pages 394-422, April.
    12. Alois Kneip & Léopold Simar & Paul Wilson, 2011. "A Computationally Efficient, Consistent Bootstrap for Inference with Non-parametric DEA Estimators," Computational Economics, Springer;Society for Computational Economics, vol. 38(4), pages 483-515, November.
    13. Kneip, Alois & Simar, Léopold & Wilson, Paul W., 2008. "Asymptotics And Consistent Bootstraps For Dea Estimators In Nonparametric Frontier Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1663-1697, December.
    14. Fare, Rolf & Zelenyuk, Valentin, 2003. "On aggregate Farrell efficiencies," European Journal of Operational Research, Elsevier, vol. 146(3), pages 615-620, May.
    15. Fukuyama, Hirofumi & Weber, William L., 2010. "A slacks-based inefficiency measure for a two-stage system with bad outputs," Omega, Elsevier, vol. 38(5), pages 398-409, October.
    16. Léopold Simar & Valentin Zelenyuk, 2018. "Central Limit Theorems for Aggregate Efficiency," Operations Research, INFORMS, vol. 66(1), pages 137-149, January.
    17. Jeong, Seok-Oh & Simar, Léopold, 2006. "Linearly interpolated FDH efficiency score for nonconvex frontiers," Journal of Multivariate Analysis, Elsevier, vol. 97(10), pages 2141-2161, November.
    18. Emrouznejad, Ali & Parker, Barnett R. & Tavares, Gabriel, 2008. "Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years of scholarly literature in DEA," Socio-Economic Planning Sciences, Elsevier, vol. 42(3), pages 151-157, September.
    19. Gorman, Michael F. & Ruggiero, John, 2008. "Evaluating US state police performance using data envelopment analysis," International Journal of Production Economics, Elsevier, vol. 113(2), pages 1031-1037, June.
    20. Cook, Wade D. & Tone, Kaoru & Zhu, Joe, 2014. "Data envelopment analysis: Prior to choosing a model," Omega, Elsevier, vol. 44(C), pages 1-4.
    21. Chowdhury, Hedayet & Zelenyuk, Valentin & Laporte, Audrey & Wodchis, Walter P., 2014. "Analysis of productivity, efficiency and technological changes in hospital services in Ontario: How does case-mix matter?," International Journal of Production Economics, Elsevier, vol. 150(C), pages 74-82.
    22. Cook, Wade D. & Liang, Liang & Zhu, Joe, 2010. "Measuring performance of two-stage network structures by DEA: A review and future perspective," Omega, Elsevier, vol. 38(6), pages 423-430, December.
    23. Joe Zhu, 2014. "Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Quantitative Models for Performance Evaluation and Benchmarking, edition 3, chapter 1, pages 1-9, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simar, Léopold & Zelenyuk, Valentin & Zhao, Shirong, 2024. "Inference for aggregate efficiency: Theory and guidelines for practitioners," European Journal of Operational Research, Elsevier, vol. 316(1), pages 240-254.
    2. Monge, Juan F. & Ruiz, José L., 2023. "Setting closer targets based on non-dominated convex combinations of Pareto-efficient units: A bi-level linear programming approach in Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1084-1096.
    3. Manh Pham & Léopold Simar & Valentin Zelenyuk, 2024. "Statistical Inference for Aggregation of Malmquist Productivity Indices," Operations Research, INFORMS, vol. 72(4), pages 1615-1629, July.
    4. Léopold Simar & Valentin Zelenyuk & Shirong Zhao, 2023. "Further improvements of finite sample approximation of central limit theorems for envelopment estimators," Journal of Productivity Analysis, Springer, vol. 59(2), pages 189-194, April.
    5. Nguyen, Bao Hoang & Simar, Léopold & Zelenyuk, Valentin, 2022. "Data sharpening for improving central limit theorem approximations for data envelopment analysis–type efficiency estimators," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1469-1480.
    6. Valentin Zelenyuk, 2021. "Performance Analysis: Economic Foundations and Trends," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(3), pages 153-229, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simar, Léopold & Zelenyuk, Valentin, 2020. "Improving finite sample approximation by central limit theorems for estimates from Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1002-1015.
    2. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    3. Zelenyuk, Valentin, 2020. "Aggregation of inputs and outputs prior to Data Envelopment Analysis under big data," European Journal of Operational Research, Elsevier, vol. 282(1), pages 172-187.
    4. Simar, Léopold & Zelenyuk, Valentin & Zhao, Shirong, 2024. "Inference for aggregate efficiency: Theory and guidelines for practitioners," European Journal of Operational Research, Elsevier, vol. 316(1), pages 240-254.
    5. Simar, Léopold & Wilson, Paul W., 2020. "Technical, allocative and overall efficiency: Estimation and inference," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1164-1176.
    6. Valentin Zelenyuk, 2023. "Productivity analysis: roots, foundations, trends and perspectives," Journal of Productivity Analysis, Springer, vol. 60(3), pages 229-247, December.
    7. Bao Hoang Nguyen & Valentin Zelenyuk, 2021. "Aggregate efficiency of industry and its groups: the case of Queensland public hospitals," Empirical Economics, Springer, vol. 60(6), pages 2795-2836, June.
    8. Zhichao Wang & Bao Hoang Nguyen & Valentin Zelenyuk, 2024. "Performance analysis of hospitals in Australia and its peers: a systematic and critical review," Journal of Productivity Analysis, Springer, vol. 62(2), pages 139-173, October.
    9. Léopold Simar & Paul W. Wilson, 2023. "Another look at productivity growth in industrialized countries," Journal of Productivity Analysis, Springer, vol. 60(3), pages 257-272, December.
    10. Caitlin T. O’Loughlin & Paul W. Wilson, 2021. "Benchmarking the performance of US Municipalities," Empirical Economics, Springer, vol. 60(6), pages 2665-2700, June.
    11. Nguyen, Bao Hoang & Simar, Léopold & Zelenyuk, Valentin, 2022. "Data sharpening for improving central limit theorem approximations for data envelopment analysis–type efficiency estimators," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1469-1480.
    12. Bao Hoang Nguyen & Léopold Simar & Valentin Zelenyuk, 2021. "Data Sharpening for improving CLT approximations for DEA-type efficiency estimators," CEPA Working Papers Series WP142021, School of Economics, University of Queensland, Australia.
    13. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.
    14. José Solana‐Ibáñez & Manuel Caravaca‐Garratón, 2021. "Stakeholder engagement and corporate social reputation: The influence of exogenous factors on efficiency performance (stakeholder engagement and exogenous factors): Stakeholder engagement and exogenou," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 28(6), pages 1891-1905, November.
    15. Chowdhury, Hedayet & Zelenyuk, Valentin, 2016. "Performance of hospital services in Ontario: DEA with truncated regression approach," Omega, Elsevier, vol. 63(C), pages 111-122.
    16. Léopold Simar & Paul W. Wilson, 2020. "Hypothesis testing in nonparametric models of production using multiple sample splits," Journal of Productivity Analysis, Springer, vol. 53(3), pages 287-303, June.
    17. Amir Moradi-Motlagh & Ali Emrouznejad, 2022. "The origins and development of statistical approaches in non-parametric frontier models: a survey of the first two decades of scholarly literature (1998–2020)," Annals of Operations Research, Springer, vol. 318(1), pages 713-741, November.
    18. Lozano, S. & Hinojosa, M.A. & Mármol, A.M., 2015. "Set-valued DEA production games," Omega, Elsevier, vol. 52(C), pages 92-100.
    19. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    20. Daraio, Cinzia & Simar, Leopold & Wilson, Paul, 2019. "Quality and its impact on efficiency," LIDAM Discussion Papers ISBA 2019004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    More about this item

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvad:2018020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.