Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/ags/aaea13/149823.html
   My bibliography  Save this paper

Ex-Post Impacts of Improved Maize Varieties on Poverty in Rural Ethiopia

Author

Listed:
  • Zeng, Di
  • Alwang, Jeffrey Roger
  • Norton, George W.
  • Shiferaw, Bekele
  • Jaleta, Moti
  • Yirga, Chilot
Abstract
A procedure is developed to examine the ex-post impacts of improved maize varieties on poverty in rural Ethiopia. Yield and cost effects of adoption are estimated econometrically under assumptions of both homogeneous and heterogeneous treatment effects. A backward derivation procedure is employed within an economic surplus framework using estimated treatment effects to identify the counterfactual income distribution without improved maize arieties. Poverty impacts are estimated as the differences in poverty indices computed using observed and counterfactual income distributions. Improved maize varieties have led to noticeable reduction in the poverty headcount ratio, depth, and severity in rural Ethiopia. However, poor producers benefit the least from adoption because their land areas are limited.

Suggested Citation

  • Zeng, Di & Alwang, Jeffrey Roger & Norton, George W. & Shiferaw, Bekele & Jaleta, Moti & Yirga, Chilot, 2013. "Ex-Post Impacts of Improved Maize Varieties on Poverty in Rural Ethiopia," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149823, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea13:149823
    DOI: 10.22004/ag.econ.149823
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/149823/files/zeng%20et%20al%202013.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.149823?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. James J. Heckman & Sergio Urzua & Edward Vytlacil, 2006. "Understanding Instrumental Variables in Models with Essential Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 389-432, August.
    2. J. P. Florens & J. J. Heckman & C. Meghir & E. Vytlacil, 2008. "Identification of Treatment Effects Using Control Functions in Models With Continuous, Endogenous Treatment and Heterogeneous Effects," Econometrica, Econometric Society, vol. 76(5), pages 1191-1206, September.
    3. Stefan Dercon & Daniel O. Gilligan & John Hoddinott & Tassew Woldehanna, 2009. "The Impact of Agricultural Extension and Roads on Poverty and Consumption Growth in Fifteen Ethiopian Villages," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(4), pages 1007-1021.
    4. Dercon, Stefan & Christiaensen, Luc, 2011. "Consumption risk, technology adoption and poverty traps: Evidence from Ethiopia," Journal of Development Economics, Elsevier, vol. 96(2), pages 159-173, November.
    5. Langyintuo, Augustine S. & Mungoma, Catherine, 2008. "The effect of household wealth on the adoption of improved maize varieties in Zambia," Food Policy, Elsevier, vol. 33(6), pages 550-559, December.
    6. Marenya, Paswel P. & Barrett, Christopher B., 2007. "Household-level determinants of adoption of improved natural resources management practices among smallholder farmers in western Kenya," Food Policy, Elsevier, vol. 32(4), pages 515-536, August.
    7. Omamo, Steven Were & Diao, Xinshen & Wood, Stanley & Chamberlin, Jordan & You, Liangzhi & Benin, Samuel & Wood-Sichra, Ulrike & Tatwangire, Alex, 2006. "Strategic priorities for agricultural development in Eastern and Central Africa:," Research reports 150, International Food Policy Research Institute (IFPRI).
    8. Beegle, Kathleen & Carletto, Calogero & Himelein, Kristen, 2012. "Reliability of recall in agricultural data," Journal of Development Economics, Elsevier, vol. 98(1), pages 34-41.
    9. Foster, James & Greer, Joel & Thorbecke, Erik, 1984. "A Class of Decomposable Poverty Measures," Econometrica, Econometric Society, vol. 52(3), pages 761-766, May.
    10. Timothy G. Conley & Christopher R. Udry, 2010. "Learning about a New Technology: Pineapple in Ghana," American Economic Review, American Economic Association, vol. 100(1), pages 35-69, March.
    11. Becerril, Javier & Abdulai, Awudu, 2010. "The Impact of Improved Maize Varieties on Poverty in Mexico: A Propensity Score-Matching Approach," World Development, Elsevier, vol. 38(7), pages 1024-1035, July.
    12. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
    13. Phoebe Koundouri & Céline Nauges & Vangelis Tzouvelekas, 2006. "Technology Adoption under Production Uncertainty: Theory and Application to Irrigation Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(3), pages 657-670.
    14. Chamberlin, Jordan & Schmidt, Emily, 2012. "Ethiopian Agriculture: A dynamic geographic perspective," IFPRI book chapters, in: Dorosh, Paul A. & Rashid, Shahidur (ed.), Food and agriculture in Ethiopia: Progress and policy challenges, chapter 2, International Food Policy Research Institute (IFPRI).
    15. Annemie Maertens & Christopher B. Barrett, 2013. "Measuring Social Networks' Effects on Agricultural Technology Adoption," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(2), pages 353-359.
    16. Mendola, Mariapia, 2007. "Agricultural technology adoption and poverty reduction: A propensity-score matching analysis for rural Bangladesh," Food Policy, Elsevier, vol. 32(3), pages 372-393, June.
    17. Cutts, Michela & Hassan, Rashid M., 2003. "An Econometric Model Of The Sadc Maize Sector," 2003 Annual Conference, October 2-3, 2003, Pretoria, South Africa 19075, Agricultural Economics Association of South Africa (AEASA).
    18. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    19. Alene, Arega D. & Manyong, V.M. & Omanya, G. & Mignouna, H.D. & Bokanga, M. & Odhiambo, G., 2008. "Smallholder market participation under transactions costs: Maize supply and fertilizer demand in Kenya," Food Policy, Elsevier, vol. 33(4), pages 318-328, August.
    20. Shaohua Chen & Martin Ravallion, 2010. "The Developing World is Poorer than We Thought, But No Less Successful in the Fight Against Poverty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 125(4), pages 1577-1625.
    21. Matuschke, Ira & Mishra, Ritesh R. & Qaim, Matin, 2007. "Adoption and Impact of Hybrid Wheat in India," World Development, Elsevier, vol. 35(8), pages 1422-1435, August.
    22. Suleiman Abrar & Oliver Morrissey & Tony Rayner, 2004. "Crop‐Level Supply Response by Agro‐Climatic Region in Ethiopia," Journal of Agricultural Economics, Wiley Blackwell, vol. 55(2), pages 289-311, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raju Ghimire & Wen-Chi Huang, 2015. "Household wealth and adoption of improved maize varieties in Nepal: a double-hurdle approach," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 7(6), pages 1321-1335, December.
    2. Bola Amoke Awotide & Aziz A. Karimov & Aliou Diagne, 2016. "Agricultural technology adoption, commercialization and smallholder rice farmers’ welfare in rural Nigeria," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 4(1), pages 1-24, December.
    3. Khonje, Makaiko & Manda, Julius & Alene, Arega D. & Kassie, Menale, 2015. "Analysis of Adoption and Impacts of Improved Maize Varieties in Eastern Zambia," World Development, Elsevier, vol. 66(C), pages 695-706.
    4. Nguezet, Paul Martin Dontsop & Diagne, Aliou & Okoruwa, Victor Olusegun & Ojehomon, Vivian, 2011. "Impact of Improved Rice Technology (NERICA varieties) on Income and Poverty among Rice Farming Households in Nigeria: A Local Average Treatment Effect (LATE) Approach," Quarterly Journal of International Agriculture, Humboldt-Universitaat zu Berlin, vol. 50(3), pages 1-25.
    5. Bachewe, Fantu Nisrane & Berhane, Guush & Minten, Bart & Taffesse, Alemayehu Seyoum, 2015. "Agricultural growth in Ethiopia (2004-2014): Evidence and drivers:," ESSP working papers 81, International Food Policy Research Institute (IFPRI).
    6. Musa Hasen Ahmed & Kassahun Mamo Geleta & Aemro Tazeze & Hiwot Mekonnen Mesfin & Eden Andualem Tilahun, 2017. "Cropping systems diversification, improved seed, manure and inorganic fertilizer adoption by maize producers of eastern Ethiopia," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-16, December.
    7. Abebayehu Girma Geffersa & Frank W. Agbola & Amir Mahmood, 2022. "Improved maize adoption and impacts on farm household welfare: Evidence from rural Ethiopia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(4), pages 860-886, October.
    8. Kostandini, Genti & La Rovere, Roberto & Abdoulaye, Tahirou, 2013. "Potential impacts of increasing average yields and reducing maize yield variability in Africa," Food Policy, Elsevier, vol. 43(C), pages 213-226.
    9. Bairagi, Subir & Bhandari, Humnath & Kumar Das, Subrata & Mohanty, Samarendu, 2021. "Flood-tolerant rice improves climate resilience, profitability, and household consumption in Bangladesh," Food Policy, Elsevier, vol. 105(C).
    10. Hsu, Yu-Chin & Huang, Ta-Cheng & Xu, Haiqing, 2023. "Testing For Unobserved Heterogeneous Treatment Effects With Observational Data," Econometric Theory, Cambridge University Press, vol. 39(3), pages 582-622, June.
    11. Mukasa Adamon N., 2016. "Working Paper 233 - Technology Adoption and Risk Exposure among Smallholder Farmers: Panel Data Evidence from Tanzania and Uganda," Working Paper Series 2328, African Development Bank.
    12. Tessema, Yohannis Mulu & Asafu-Adjaye, John & Kassie, Menale & Mallawaarachchi, Thilak, 2016. "Do neighbours matter in technology adoption? The case of conservation tillage in northwest Ethiopia," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 11(3).
    13. Tigist Mekonnen Melesse, 2015. "Agricultural Technology Adoption and Market Participation under Learning Externality: Impact Evaluation on Small-scale Agriculture from Rural Ethiopia," Working Papers 2015/06, Maastricht School of Management.
    14. Khonje, Makaiko & Mkandawire, Petros & Manda, Julius & Alene, Arega, 2015. "Analysis of adoption and impacts of improved cassava varieties," 2015 Conference, August 9-14, 2015, Milan, Italy 211842, International Association of Agricultural Economists.
    15. Nazziwa-Nviiri, Lydia & Van Campenhout, Bjorn & Amwonya, David, 2017. "Stimulating agricultural technology adoption: Lessons from fertilizer use among Ugandan potato farmers," IFPRI discussion papers 1608, International Food Policy Research Institute (IFPRI).
    16. Mekonnen, Tigist, 2017. "Impact of agricultural technology adoption on market participation in the rural social network system," MERIT Working Papers 2017-008, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    17. Lee, Jinhyun, 2013. "Sharp Bounds on Heterogeneous Individual Treatment Responses," SIRE Discussion Papers 2013-89, Scottish Institute for Research in Economics (SIRE).
    18. Giuseppe Maggio & Marina Mastrorillo & Nicholas J. Sitko, 2022. "Adapting to High Temperatures: Effect of Farm Practices and Their Adoption Duration on Total Value of Crop Production in Uganda," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 385-403, January.
    19. Tesfaye, Wondimagegn & Tirivayi, Nyasha, 2020. "Crop diversity, household welfare and consumption smoothing under risk: Evidence from rural Uganda," World Development, Elsevier, vol. 125(C).
    20. Christina Handschuch & Meike Wollni, 2016. "Improved production systems for traditional food crops: the case of finger millet in western Kenya," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(4), pages 783-797, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea13:149823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.