Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/aah/create/2009-55.html
   My bibliography  Save this paper

Nearly Efficient Likelihood Ratio Tests for Seasonal Unit Roots

Author

Listed:
  • Michael Jansson

    (UC Berkeley and CREATES)

  • Morten Ørregaard Nielsen

    (Queen's University and CREATES)

Abstract
In an important generalization of zero frequency autoregressive unit root tests, Hylleberg, Engle, Granger, and Yoo (1990) developed regression-based tests for unit roots at the seasonal frequencies in quarterly time series. We develop likelihood ratio tests for seasonal unit roots and show that these tests are "nearly efficient" in the sense of Elliott, Rothenberg, and Stock (1996), i.e. that their local asymptotic power functions are indistinguishable from the Gaussian power envelope. Currently available nearly efficient testing procedures for seasonal unit roots are regression-based and require the choice of a GLS detrending parameter, which our likelihood ratio tests do not.

Suggested Citation

  • Michael Jansson & Morten Ørregaard Nielsen, 2009. "Nearly Efficient Likelihood Ratio Tests for Seasonal Unit Roots," CREATES Research Papers 2009-55, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2009-55
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/creates/rp/09/rp09_55.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ulrich K. M¸ller & Graham Elliott, 2003. "Tests for Unit Roots and the Initial Condition," Econometrica, Econometric Society, vol. 71(4), pages 1269-1286, July.
    2. Jansson Michael & Nielsen Morten Ørregaard, 2011. "Nearly Efficient Likelihood Ratio Tests for Seasonal Unit Roots," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-21, February.
    3. Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2007. "Efficient tests of the seasonal unit root hypothesis," Journal of Econometrics, Elsevier, vol. 141(2), pages 548-573, December.
    4. Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2009. "Unit Root Testing In Practice: Dealing With Uncertainty Over The Trend And Initial Condition," Econometric Theory, Cambridge University Press, vol. 25(3), pages 587-636, June.
    5. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
    6. Michael Jansson, 2008. "Semiparametric Power Envelopes for Tests of the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 76(5), pages 1103-1142, September.
    7. Michael Jansson & Morten Ørregaard Nielsen, 2012. "Nearly Efficient Likelihood Ratio Tests of the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 80(5), pages 2321-2332, September.
    8. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    9. Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2004. "Asymptotic Distributions For Regression-Based Seasonal Unit Root Test Statistics In A Near-Integrated Model," Econometric Theory, Cambridge University Press, vol. 20(4), pages 645-670, August.
    10. Smith, Richard J. & Taylor, A.M. Robert & del Barrio Castro, Tomas, 2009. "Regression-Based Seasonal Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 25(2), pages 527-560, April.
    11. Elliott, Graham, 1999. "Efficient Tests for a Unit Root When the Initial Observation Is Drawn from Its Unconditional Distribution," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(3), pages 767-783, August.
    12. Gregoir, Stephane, 2006. "Efficient tests for the presence of a pair of complex conjugate unit roots in real time series," Journal of Econometrics, Elsevier, vol. 130(1), pages 45-100, January.
    13. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    14. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    15. Rothenberg, Thomas J. & Stock, James H., 1997. "Inference in a nearly integrated autoregressive model with nonnormal innovations," Journal of Econometrics, Elsevier, vol. 80(2), pages 269-286, October.
    16. Joseph Beaulieu, J. & Miron, Jeffrey A., 1993. "Seasonal unit roots in aggregate U.S. data," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 305-328.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jansson Michael & Nielsen Morten Ørregaard, 2011. "Nearly Efficient Likelihood Ratio Tests for Seasonal Unit Roots," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-21, February.
    2. Eroğlu, Burak Alparslan & Göğebakan, Kemal Çağlar & Trokić, Mirza, 2018. "Powerful nonparametric seasonal unit root tests," Economics Letters, Elsevier, vol. 167(C), pages 75-80.
    3. Skrobotov, Anton, 2018. "On bootstrap implementation of likelihood ratio test for a unit root," Economics Letters, Elsevier, vol. 171(C), pages 154-158.
    4. Samuel Brien & Michael Jansson & Morten Ørregaard Nielsen, 2022. "Nearly Efficient Likelihood Ratio Tests of a Unit Root in an Autoregressive Model of Arbitrary Order," Working Paper 1429, Economics Department, Queen's University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2007. "Efficient tests of the seasonal unit root hypothesis," Journal of Econometrics, Elsevier, vol. 141(2), pages 548-573, December.
    2. del Barrio Castro, Tomás & Rodrigues, Paulo M.M. & Robert Taylor, A.M., 2018. "Semi-Parametric Seasonal Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 34(2), pages 447-476, April.
    3. Chambers, Marcus J. & Ercolani, Joanne S. & Taylor, A.M. Robert, 2014. "Testing for seasonal unit roots by frequency domain regression," Journal of Econometrics, Elsevier, vol. 178(P2), pages 243-258.
    4. Samuel Brien & Michael Jansson & Morten Ørregaard Nielsen, 2022. "Nearly Efficient Likelihood Ratio Tests of a Unit Root in an Autoregressive Model of Arbitrary Order," Working Paper 1429, Economics Department, Queen's University.
    5. Tomás Barrio Castro & Andrii Bodnar & Andreu Sansó, 2017. "Numerical distribution functions for seasonal unit root tests with OLS and GLS detrending," Computational Statistics, Springer, vol. 32(4), pages 1533-1568, December.
    6. Rodrigues, Paulo M. M. & Taylor, A. M. Robert, 2004. "Alternative estimators and unit root tests for seasonal autoregressive processes," Journal of Econometrics, Elsevier, vol. 120(1), pages 35-73, May.
    7. Tom�s del Barrio Castro & Denise R. Osborn & A.M. Robert Taylor, 2016. "The Performance of Lag Selection and Detrending Methods for HEGY Seasonal Unit Root Tests," Econometric Reviews, Taylor & Francis Journals, vol. 35(1), pages 122-168, January.
    8. Maxwell L. King & Sivagowry Sriananthakumar, 2015. "Point Optimal Testing: A Survey of the Post 1987 Literature," Monash Econometrics and Business Statistics Working Papers 5/15, Monash University, Department of Econometrics and Business Statistics.
    9. Castro, Tomás del Barrio & Osborn, Denise R. & Taylor, A.M. Robert, 2012. "On Augmented Hegy Tests For Seasonal Unit Roots," Econometric Theory, Cambridge University Press, vol. 28(5), pages 1121-1143, October.
    10. Boswijk, H. Peter & Jansson, Michael & Nielsen, Morten Ørregaard, 2015. "Improved likelihood ratio tests for cointegration rank in the VAR model," Journal of Econometrics, Elsevier, vol. 184(1), pages 97-110.
    11. del Barrio Castro, Tomás & Osborn, Denise R., 2023. "Periodic Integration and Seasonal Unit Roots," MPRA Paper 117935, University Library of Munich, Germany, revised 2023.
    12. Michael Jansson & Morten Ørregaard Nielsen, 2012. "Nearly Efficient Likelihood Ratio Tests of the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 80(5), pages 2321-2332, September.
    13. repec:hal:journl:peer-00834424 is not listed on IDEAS
    14. Hallin, Marc & van den Akker, Ramon & Werker, Bas J.M., 2011. "A class of simple distribution-free rank-based unit root tests," Journal of Econometrics, Elsevier, vol. 163(2), pages 200-214, August.
    15. Stephan Smeekes, 2013. "Detrending Bootstrap Unit Root Tests," Econometric Reviews, Taylor & Francis Journals, vol. 32(8), pages 869-891, November.
    16. Atle Oglend & Frank Asche, 2016. "Cyclical non-stationarity in commodity prices," Empirical Economics, Springer, vol. 51(4), pages 1465-1479, December.
    17. Eroğlu, Burak Alparslan & Göğebakan, Kemal Çağlar & Trokić, Mirza, 2018. "Powerful nonparametric seasonal unit root tests," Economics Letters, Elsevier, vol. 167(C), pages 75-80.
    18. Jardet, Caroline & Monfort, Alain & Pegoraro, Fulvio, 2013. "No-arbitrage Near-Cointegrated VAR(p) term structure models, term premia and GDP growth," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 389-402.
    19. Hallin, M. & van den Akker, R. & Werker, B.J.M., 2011. "A Class of Simple Distribution-free Rank-based Unit Root Tests (Revision of DP 2010-72)," Other publications TiSEM 004c9726-ec6a-4884-8238-d, Tilburg University, School of Economics and Management.
    20. Michael Jansson & Marcelo J. Moreira, 2006. "Optimal Inference in Regression Models with Nearly Integrated Regressors," Econometrica, Econometric Society, vol. 74(3), pages 681-714, May.
    21. Skrobotov Anton, 2018. "On Trend Breaks and Initial Condition in Unit Root Testing," Journal of Time Series Econometrics, De Gruyter, vol. 10(1), pages 1-15, January.

    More about this item

    Keywords

    Likelihood Ratio Test; Seasonal Unit Root Hypothesis;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2009-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.