Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb373/200138.html
   My bibliography  Save this paper

The dynamics of implied volatilities: A common principal components approach

Author

Listed:
  • Fengler, Matthias R.
  • Härdle, Wolfgang Karl
  • Villa, Christophe
Abstract
It is common practice to identify the number and sources of shocks that move implied volatilities across space and time by applying Principal Components Analysis (PCA) to pooled covariance matrices of changes in implied volatilities. This approach, however, is likely to result in a loss of information, since the surface structure of implied volatilities in the maturities and moneyness dimension is neglected. In this paper we propose to estimate the implied volatility surface at each point in time nonparametrically and to analyze the implied volatility surface slice by slice with a common principal components analysis (CPCA). As opposed to traditional PCA, the basic assumption of CPCA is that the space spanned by the eigenvectors is identical across groups, whereas variances associated with the components are allowed to vary. This allows us to study a p variate random vector of k groups, say the volatility smile at p different grid points of moneyness for k maturities, simultaneously. Our evidence suggests that surface dynamics can indeed be traced back to a common eigenstructure between covariance matrices of the surface slices, which allow for the usual shift, slope, and twist interpretation of shocks to implied volatilities. This insight is a suitable starting point for VaR Monte Carlo Simulations of delta-gamma neutral, vega sensitive option portfolios.

Suggested Citation

  • Fengler, Matthias R. & Härdle, Wolfgang Karl & Villa, Christophe, 2001. "The dynamics of implied volatilities: A common principal components approach," SFB 373 Discussion Papers 2001,38, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  • Handle: RePEc:zbw:sfb373:200138
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/62716/1/724896961.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
    2. Rama Cont & Jose da Fonseca, 2002. "Dynamics of implied volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 45-60.
    3. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    4. Farshid Jamshidian & Yu Zhu, 1996. "Scenario Simulation: Theory and methodology (*)," Finance and Stochastics, Springer, vol. 1(1), pages 43-67.
    5. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    6. Bera, Anil K. & Jarque, Carlos M., 1982. "Model specification tests : A simultaneous approach," Journal of Econometrics, Elsevier, vol. 20(1), pages 59-82, October.
    7. Yingzi Zhu & Marco Avellaneda, 1997. "An E-ARCH model for the term structure of implied volatility of FX options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 4(2), pages 81-100.
    8. Fengler, Matthias R. & Härdle, Wolfgang & Mammen, Enno, 2003. "Implied volatility string dynamics," SFB 373 Discussion Papers 2003,54, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    10. repec:bla:jfinan:v:53:y:1998:i:6:p:2059-2106 is not listed on IDEAS
    11. Fengler, Matthias R. & Wang, Qihua, 2003. "Fitting the Smile Revisited: A Least Squares Kernel Estimator for the Implied Volatility Surface," SFB 373 Discussion Papers 2003,25, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    12. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2005-020 is not listed on IDEAS
    2. Fengler, Matthias R. & Härdle, Wolfgang & Mammen, Enno, 2003. "Implied volatility string dynamics," SFB 373 Discussion Papers 2003,54, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    3. Fengler, Matthias R. & Härdle, Wolfgang Karl & Mammen, Enno, 2005. "A dynamic semiparametric factor model for implied volatility string dynamics," SFB 649 Discussion Papers 2005-020, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    5. Toby Daglish & John Hull & Wulin Suo, 2007. "Volatility surfaces: theory, rules of thumb, and empirical evidence," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 507-524.
    6. Jan Maruhn & Morten Nalholm & Matthias Fengler, 2011. "Static hedges for reverse barrier options with robustness against skew risk: an empirical analysis," Quantitative Finance, Taylor & Francis Journals, vol. 11(5), pages 711-727.
    7. Bogdan Negrea & Bertrand Maillet & Emmanuel Jurczenko, 2002. "Revisited Multi-moment Approximate Option," FMG Discussion Papers dp430, Financial Markets Group.
    8. Bernd Engelmann & Matthias Fengler & Morten Nalholm & Peter Schwendner, 2006. "Static versus dynamic hedges: an empirical comparison for barrier options," Review of Derivatives Research, Springer, vol. 9(3), pages 239-264, November.
    9. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    10. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
    11. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    12. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    13. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    14. Falko Baustian & Katev{r}ina Filipov'a & Jan Posp'iv{s}il, 2019. "Solution of option pricing equations using orthogonal polynomial expansion," Papers 1912.06533, arXiv.org, revised Jun 2020.
    15. Jianhui Li & Sebastian A. Gehricke & Jin E. Zhang, 2019. "How do US options traders “smirk” on China? Evidence from FXI options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(11), pages 1450-1470, November.
    16. Bakshi, Gurdip S. & Zhiwu, Chen, 1997. "An alternative valuation model for contingent claims," Journal of Financial Economics, Elsevier, vol. 44(1), pages 123-165, April.
    17. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    18. Marcos Escobar & Christoph Gschnaidtner, 2018. "A multivariate stochastic volatility model with applications in the foreign exchange market," Review of Derivatives Research, Springer, vol. 21(1), pages 1-43, April.
    19. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    20. Robert Azencott & Yutheeka Gadhyan & Roland Glowinski, 2014. "Option Pricing Accuracy for Estimated Heston Models," Papers 1404.4014, arXiv.org, revised Jul 2015.

    More about this item

    Keywords

    Common Principal Component Analysis; Implied Volatility Surface; Principal Component Analysis; Smile;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C49 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Other
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb373:200138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sfhubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.