Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20080096.html
   My bibliography  Save this paper

Bayesian Averaging over Many Dynamic Model Structures with Evidence on the Great Ratios and Liquidity Trap Risk

Author

Listed:
  • Rodney W. Strachan

    (The University of Queensland, Australia)

  • Herman K. van Dijk

    (Erasmus University Rotterdam, the Netherlands)

Abstract
A Bayesian model averaging procedure is presented that makes use of a finite mixture of many model structures within the class of vector autoregressive (VAR) processes. It is applied to two empirical issues. First, stability of the Great Ratios in U.S. macro-economic time series is investigated, together with the effect of permanent shocks on business cycles. Second, the linear VAR model is extended to include a smooth transition function in a (monetary) equation and stochastic volatility in the disturbances. The risk of a liquidity trap in the U.S.A. and Japan is evaluated. Although this risk found to be reasonably high, we find only mild evidence that the monetary policy transmission mechanism is different and that central banks consider the expected cost of a liquidity trap in policy setting. Posterior probabilities of different models are evaluated using Markov chain Monte Carlo techniques.

Suggested Citation

  • Rodney W. Strachan & Herman K. van Dijk, 2008. "Bayesian Averaging over Many Dynamic Model Structures with Evidence on the Great Ratios and Liquidity Trap Risk," Tinbergen Institute Discussion Papers 08-096/4, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20080096
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/08096.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lennart Hoogerheide & Richard Kleijn & Francesco Ravazzolo & Herman K. Van Dijk & Marno Verbeek, 2010. "Forecast accuracy and economic gains from Bayesian model averaging using time-varying weights," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 251-269.
    2. Abdollahi, Hooman & Ebrahimi, Seyed Babak, 2020. "A new hybrid model for forecasting Brent crude oil price," Energy, Elsevier, vol. 200(C).
    3. Safari, Ali & Davallou, Maryam, 2018. "Oil price forecasting using a hybrid model," Energy, Elsevier, vol. 148(C), pages 49-58.

    More about this item

    Keywords

    Posterior probability; Grassman manifold; Orthogonal group; Cointegration; Model averaging; Stochastic trend; Impulse response; Vector autoregressive model; Great Ratios; Liquidity trap;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20080096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.