Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/h/eme/aecozz/s0731-905320140000034003.html
   My bibliography  Save this book chapter

Adaptive Sequential Posterior Simulators for Massively Parallel Computing Environments

In: Bayesian Model Comparison

Author

Listed:
  • Garland Durham
  • John Geweke
Abstract
Massively parallel desktop computing capabilities now well within the reach of individual academics modify the environment for posterior simulation in fundamental and potentially quite advantageous ways. But to fully exploit these benefits algorithms that conform to parallel computing environments are needed. This paper presents a sequential posterior simulator designed to operate efficiently in this context. The simulator makes fewer analytical and programming demands on investigators, and is faster, more reliable, and more complete than conventional posterior simulators. The paper extends existing sequential Monte Carlo methods and theory to provide a thorough and practical foundation for sequential posterior simulation that is well suited to massively parallel computing environments. It provides detailed recommendations on implementation, yielding an algorithm that requires only code for simulation from the prior and evaluation of prior and data densities and works well in a variety of applications representative of serious empirical work in economics and finance. The algorithm facilitates Bayesian model comparison by producing marginal likelihood approximations of unprecedented accuracy as an incidental by-product, is robust to pathological posterior distributions, and provides estimates of numerical standard error and relative numerical efficiency intrinsically. The paper concludes with an application that illustrates the potential of these simulators for applied Bayesian inference.

Suggested Citation

  • Garland Durham & John Geweke, 2014. "Adaptive Sequential Posterior Simulators for Massively Parallel Computing Environments," Advances in Econometrics, in: Bayesian Model Comparison, volume 34, pages 1-44, Emerald Group Publishing Limited.
  • Handle: RePEc:eme:aecozz:s0731-905320140000034003
    DOI: 10.1108/S0731-905320140000034003
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/S0731-905320140000034003/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: no

    File URL: https://www.emerald.com/insight/content/doi/10.1108/S0731-905320140000034003/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: no

    File URL: https://www.emerald.com/insight/content/doi/10.1108/S0731-905320140000034003/full/epub?utm_source=repec&utm_medium=feed&utm_campaign=repec&title=10.1108/S0731-905320140000034003
    Download Restriction: no

    File URL: https://libkey.io/10.1108/S0731-905320140000034003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Herbst, Edward & Schorfheide, Frank, 2019. "Tempered particle filtering," Journal of Econometrics, Elsevier, vol. 210(1), pages 26-44.
    2. Michael Cai & Marco Del Negro & Edward Herbst & Ethan Matlin & Reca Sarfati & Frank Schorfheide, 2021. "Online estimation of DSGE models," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 33-58.
    3. Luisa Corrado & Stefano Grassi & Aldo Paolillo, 2021. "Modelling and Estimating Large Macroeconomic Shocks During the Pandemic," National Institute of Economic and Social Research (NIESR) Discussion Papers 530, National Institute of Economic and Social Research.
    4. Xiaohong Chen & Timothy M. Christensen & Elie Tamer, 2018. "Monte Carlo Confidence Sets for Identified Sets," Econometrica, Econometric Society, vol. 86(6), pages 1965-2018, November.
    5. Dellaportas, Petros & Tsionas, Mike G., 2019. "Importance sampling from posterior distributions using copula-like approximations," Journal of Econometrics, Elsevier, vol. 210(1), pages 45-57.
    6. Mariolis Theodore & Konstantakis Konstantinos N. & Michaelides Panayotis G. & Tsionas Efthymios G., 2019. "A non-linear Keynesian Goodwin-type endogenous model of the cycle: Bayesian evidence for the USA," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 23(1), pages 1-16, February.
    7. Casarin, Roberto & Grassi, Stefano & Ravazzolo, Francesco & van Dijk, Herman K., 2015. "Parallel Sequential Monte Carlo for Efficient Density Combination: The DeCo MATLAB Toolbox," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 68(i03).
    8. John Geweke, 2016. "Sequentially Adaptive Bayesian Learning for a Nonlinear Model of the Secular and Cyclical Behavior of US Real GDP," Econometrics, MDPI, vol. 4(1), pages 1-23, March.
    9. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    10. Waggoner, Daniel F. & Wu, Hongwei & Zha, Tao, 2016. "Striated Metropolis–Hastings sampler for high-dimensional models," Journal of Econometrics, Elsevier, vol. 192(2), pages 406-420.
    11. Arnaud Dufays, 2016. "Evolutionary Sequential Monte Carlo Samplers for Change-Point Models," Econometrics, MDPI, vol. 4(1), pages 1-33, March.
    12. Martin Burda & Remi Daviet, 2023. "Hamiltonian sequential Monte Carlo with application to consumer choice behavior," Econometric Reviews, Taylor & Francis Journals, vol. 42(1), pages 54-77, January.
    13. Luisa Corrado & Stefano Grassi & Aldo Paolillo, 2021. "Identifying Economic Shocks in a Rare Disaster Environment," CEIS Research Paper 517, Tor Vergata University, CEIS, revised 18 Jul 2024.
    14. Yin, Ming, 2015. "Estimating Gaussian Mixture Autoregressive model with Sequential Monte Carlo algorithm: A parallel GPU implementation," MPRA Paper 88111, University Library of Munich, Germany, revised 2018.
    15. Dufays, Arnaud & Rombouts, Jeroen V.K., 2020. "Relevant parameter changes in structural break models," Journal of Econometrics, Elsevier, vol. 217(1), pages 46-78.
    16. Mlikota, Marko & Schorfheide, Frank, 2022. "Sequential Monte Carlo With Model Tempering," CEPR Discussion Papers 17035, C.E.P.R. Discussion Papers.
    17. Mark Bognanni & John Zito, 2019. "Sequential Bayesian Inference for Vector Autoregressions with Stochastic Volatility," Working Papers 19-29, Federal Reserve Bank of Cleveland.
    18. Markku Lanne & Jani Luoto, 2015. "Estimation of DSGE Models under Diffuse Priors and Data-Driven Identification Constraints," CREATES Research Papers 2015-37, Department of Economics and Business Economics, Aarhus University.
    19. Bognanni, Mark & Zito, John, 2020. "Sequential Bayesian inference for vector autoregressions with stochastic volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    20. Markku Lanne & Jani Luoto, 2018. "Data†Driven Identification Constraints for DSGE Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(2), pages 236-258, April.
    21. Geweke, John & Durham, Garland, 2019. "Sequentially adaptive Bayesian learning algorithms for inference and optimization," Journal of Econometrics, Elsevier, vol. 210(1), pages 4-25.
    22. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2019. "Density Forecasting," BEMPS - Bozen Economics & Management Paper Series BEMPS59, Faculty of Economics and Management at the Free University of Bozen.

    More about this item

    Keywords

    Bayesian model comparison; marginal likelihood; graphics processing unit; particle filter; posterior simulation; sequential Monte Carlo; Primary; C11; Secondary; C630;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:aecozz:s0731-905320140000034003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.