(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of t
(This abstract was borrowed from another version of this item.)"> (This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of t
(This abstract was borrowed from another version of this item.)">
Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v14y2006i1p135-166.html
   My bibliography  Save this article

Input, output and graph technical efficiency measures on non-convex FDH models with various scaling laws: An integrated approach based upon implicit enumeration algorithms

Author

Listed:
  • Walter Briec
  • Kristiaan Kerstens
Abstract
In a recent article, Briec, Kerstens and Vanden Eeckaut (2004) develop a series of nonparametric, deterministic non-convex technologies integrating traditional returns to scale assumptions into the non-convex FDH model. They show, among other things, how the traditional technical input efficiency measure can be analytically derived for these technology specifications. In this paper, we develop a similar approach to calculate output and graph measures of technical efficiency and indicate the general advantage of such solution strategy via enumeration. Furthermore, several analytical formulas are established and some algorithms are proposed relating the three measurement orientations to one another.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of t
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Walter Briec & Kristiaan Kerstens, 2006. "Input, output and graph technical efficiency measures on non-convex FDH models with various scaling laws: An integrated approach based upon implicit enumeration algorithms," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 14(1), pages 135-166, June.
  • Handle: RePEc:spr:topjnl:v:14:y:2006:i:1:p:135-166
    DOI: 10.1007/BF02579006
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02579006
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02579006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kerstens, Kristiaan & Vanden Eeckaut, Philippe, 1999. "Estimating returns to scale using non-parametric deterministic technologies: A new method based on goodness-of-fit," European Journal of Operational Research, Elsevier, vol. 113(1), pages 206-214, February.
    2. Léopold Simar & Paul Wilson, 2000. "Statistical Inference in Nonparametric Frontier Models: The State of the Art," Journal of Productivity Analysis, Springer, vol. 13(1), pages 49-78, January.
    3. Tone, Kaoru & Sahoo, Biresh K., 2003. "Scale, indivisibilities and production function in data envelopment analysis," International Journal of Production Economics, Elsevier, vol. 84(2), pages 165-192, May.
    4. Niels Petersen, 2001. "A Comment on: Lower Bound Restrictions on Intensities in Data Envelopment Analysis by Bouhnik et al," Journal of Productivity Analysis, Springer, vol. 16(3), pages 263-267, November.
    5. Leleu, Herve, 2006. "A linear programming framework for free disposal hull technologies and cost functions: Primal and dual models," European Journal of Operational Research, Elsevier, vol. 168(2), pages 340-344, January.
    6. Fare,Rolf & Grosskopf,Shawna & Lovell,C. A. Knox, 2008. "Production Frontiers," Cambridge Books, Cambridge University Press, number 9780521072069, October.
    7. repec:bla:scandj:v:85:y:1983:i:2:p:181-90 is not listed on IDEAS
    8. Walter Briec & Kristiaan Kerstens & Philippe Venden Eeckaut, 2004. "Non-convex Technologies and Cost Functions: Definitions, Duality and Nonparametric Tests of Convexity," Journal of Economics, Springer, vol. 81(2), pages 155-192, February.
    9. Herbert E. Scarf, 2008. "Neighborhood Systems for Production Sets with Indivisibilities," Palgrave Macmillan Books, in: Zaifu Yang (ed.), Herbert Scarf’s Contributions to Economics, Game Theory and Operations Research, chapter 5, pages 105-130, Palgrave Macmillan.
    10. François Mairesse & Philippe Vanden Eeckaut, 2002. "Museum Assessment and FDH Technology: Towards a Global Approach," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 26(4), pages 261-286, November.
    11. Fried, Harold O. & Lovell, C. A. Knox & Schmidt, Shelton S. (ed.), 1993. "The Measurement of Productive Efficiency: Techniques and Applications," OUP Catalogue, Oxford University Press, number 9780195072181.
    12. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    13. Fare, Rolf & Li, Sung Ko, 1998. "Inner and outer approximations of technology: a data envelopment analysis approach," European Journal of Operational Research, Elsevier, vol. 105(3), pages 622-625, March.
    14. Fried, H. O. & Knox Lovell, C.A. & Vanden Eeckaut, P., 1995. "Service productivity in U.S. credit unions," LIDAM Reprints CORE 1169, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    15. Dominique Deprins & Léopold Simar & Henry Tulkens, 2006. "Measuring Labor-Efficiency in Post Offices," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 285-309, Springer.
    16. Bauer, Paul W. & Hancock, Diana, 1993. "The efficiency of the Federal Reserve in providing check processing services," Journal of Banking & Finance, Elsevier, vol. 17(2-3), pages 287-311, April.
    17. Maria Silva Portela & Pedro Borges & Emmanuel Thanassoulis, 2003. "Finding Closest Targets in Non-Oriented DEA Models: The Case of Convex and Non-Convex Technologies," Journal of Productivity Analysis, Springer, vol. 19(2), pages 251-269, April.
    18. Laurens Cherchye & Timo Kuosmanen & Thierry Post, 2001. "FDH Directional Distance Functions with an Application to European Commercial Banks," Journal of Productivity Analysis, Springer, vol. 15(3), pages 201-215, January.
    19. Walter Briec & Kristiaan Kerstens & Hervé Leleu & Philippe Eeckaut, 2000. "Returns to Scale on Nonparametric Deterministic Technologies: Simplifying Goodness-of-Fit Methods Using Operations on Technologies," Journal of Productivity Analysis, Springer, vol. 14(3), pages 267-274, November.
    20. Herbert E. Scarf, 2008. "Production Sets with Indivisibilities Part I: Generalities," Palgrave Macmillan Books, in: Zaifu Yang (ed.), Herbert Scarf’s Contributions to Economics, Game Theory and Operations Research, chapter 2, pages 7-38, Palgrave Macmillan.
    21. Peter Bogetoft, 1996. "DEA on Relaxed Convexity Assumptions," Management Science, INFORMS, vol. 42(3), pages 457-465, March.
    22. repec:cor:louvrp:-571 is not listed on IDEAS
    23. Herbert Scarf, 1994. "The Allocation of Resources in the Presence of Indivisibilities," Journal of Economic Perspectives, American Economic Association, vol. 8(4), pages 111-128, Fall.
    24. Alam, Ila M Semenick & Sickles, Robin C, 2000. "Time Series Analysis of Deregulatory Dynamics and Technical Efficiency: The Case of the U.S. Airline Industry," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 41(1), pages 203-218, February.
    25. Herbert E. Scarf, 2008. "Production Sets with Indivisibilities Part II. The Case of Two Activities," Palgrave Macmillan Books, in: Zaifu Yang (ed.), Herbert Scarf’s Contributions to Economics, Game Theory and Operations Research, chapter 3, pages 39-67, Palgrave Macmillan.
    26. Sergio Destefanis, 2002. "The Verdoorn Law: Some Evidence from Non-Parametric Frontier Analysis," Palgrave Macmillan Books, in: John McCombie & Maurizio Pugno & Bruno Soro (ed.), Productivity Growth and Economic Performance, chapter 6, pages 136-164, Palgrave Macmillan.
    27. Sergio Destefanis & Giuseppe Storti, 2002. "Measuring cross-country technological catch-up through variable-parameter FDH," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 11(1), pages 109-125, February.
    28. Drake, Leigh & Simper, R., 2003. "The measurement of English and Welsh police force efficiency: A comparison of distance function models," European Journal of Operational Research, Elsevier, vol. 147(1), pages 165-186, May.
    29. Borger, Bruno De & Ferrier, Gary D. & Kerstens, Kristiaan, 1998. "The choice of a technical efficiency measure on the free disposal hull reference technology: A comparison using US banking data," European Journal of Operational Research, Elsevier, vol. 105(3), pages 427-446, March.
    30. Fare, Rolf & Grosskopf, Shawna & Zaim, Osman, 2002. "Hyperbolic efficiency and return to the dollar," European Journal of Operational Research, Elsevier, vol. 136(3), pages 671-679, February.
    31. Sylvain Bouhnik & Boaz Golany & Ury Passy & Steven Hackman & Dimitra Vlatsa, 2001. "Lower Bound Restrictions on Intensities in Data Envelopment Analysis," Journal of Productivity Analysis, Springer, vol. 16(3), pages 241-261, November.
    32. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    33. Walter Briec & Kristiaan Kerstens & Philippe Vanden Eeckaut, 2006. "Non-convex Technologies and Cost Functions: Definitions, Duality and Nonparametric Tests of Convexity (Journal of Economics 81(2):155–192)," Journal of Economics, Springer, vol. 87(3), pages 307-308, April.
    34. Thore, Sten, 1996. "Economies of Scale in the US Computer Industry: An Empirical Investigation Using Data Envelopment Analysis," Journal of Evolutionary Economics, Springer, vol. 6(2), pages 199-216, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kerstens, Kristiaan & Sadeghi, Jafar & Toloo, Mehdi & Van de Woestyne, Ignace, 2022. "Procedures for ranking technical and cost efficient units: With a focus on nonconvexity," European Journal of Operational Research, Elsevier, vol. 300(1), pages 269-281.
    2. Kristiaan Kerstens & Ignace Van de Woestyne, 2018. "Enumeration algorithms for FDH directional distance functions under different returns to scale assumptions," Annals of Operations Research, Springer, vol. 271(2), pages 1067-1078, December.
    3. Antonio Peyrache & Maria C. A. Silva, 2022. "A Comment on Decomposition of Efficiency in Network Production Models," CEPA Working Papers Series WP072022, School of Economics, University of Queensland, Australia.
    4. Caporin, Massimiliano & Costola, Michele & Jannin, Gregory & Maillet, Bertrand, 2018. "“On the (Ab)use of Omega?”," Journal of Empirical Finance, Elsevier, vol. 46(C), pages 11-33.
    5. Antonio Peyrache, 2024. "Homothetic Data Generated Production Metatechnologies," CEPA Working Papers Series WP022024, School of Economics, University of Queensland, Australia.
    6. Antonio Peyrache, 2024. "A Homothetic and Additively Separable Production Frontier," CEPA Working Papers Series WP012024, School of Economics, University of Queensland, Australia.
    7. Antonio Peyrache, 2022. "A Homothetic Data Generated Technology," CEPA Working Papers Series WP042022, School of Economics, University of Queensland, Australia.
    8. Peyrache, Antonio, 2024. "A homothetic data generated technology," European Journal of Operational Research, Elsevier, vol. 316(1), pages 255-267.
    9. Mahmood Mehdiloo & Jafar Sadeghi & Kristiaan Kerstens, 2024. "Top Down Axiomatic Modeling of Metatechnologies and Evaluating Directional Economic Efficiency," Working Papers 2024-EQM-03, IESEG School of Management.
    10. Tavakoli, Ibrahim M. & Mostafaee, Amin, 2019. "Free disposal hull efficiency scores of units with network structures," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1027-1036.
    11. Soleimani-damaneh, Majid & Mostafaee, Amin, 2015. "Identification of the anchor points in FDH models," European Journal of Operational Research, Elsevier, vol. 246(3), pages 936-943.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cesaroni, Giovanni & Kerstens, Kristiaan & Van de Woestyne, Ignace, 2017. "Global and local scale characteristics in convex and nonconvex nonparametric technologies: A first empirical exploration," European Journal of Operational Research, Elsevier, vol. 259(2), pages 576-586.
    2. Kristiaan Kerstens & Ignace Van de Woestyne, 2018. "Enumeration algorithms for FDH directional distance functions under different returns to scale assumptions," Annals of Operations Research, Springer, vol. 271(2), pages 1067-1078, December.
    3. J. Vakili & R. Sadighi Dizaji, 2021. "The closest strong efficient targets in the FDH technology: an enumeration method," Journal of Productivity Analysis, Springer, vol. 55(2), pages 91-105, April.
    4. Tone, Kaoru & Sahoo, Biresh K., 2003. "Scale, indivisibilities and production function in data envelopment analysis," International Journal of Production Economics, Elsevier, vol. 84(2), pages 165-192, May.
    5. Kristof Witte & Rui Marques, 2011. "Big and beautiful? On non-parametrically measuring scale economies in non-convex technologies," Journal of Productivity Analysis, Springer, vol. 35(3), pages 213-226, June.
    6. Kerstens, Kristiaan & Vanden Eeckaut, Philippe, 1999. "Estimating returns to scale using non-parametric deterministic technologies: A new method based on goodness-of-fit," European Journal of Operational Research, Elsevier, vol. 113(1), pages 206-214, February.
    7. Sahoo, Biresh K. & Tone, Kaoru, 2013. "Non-parametric measurement of economies of scale and scope in non-competitive environment with price uncertainty," Omega, Elsevier, vol. 41(1), pages 97-111.
    8. Keshvari, Abolfazl & Kuosmanen, Timo, 2013. "Stochastic non-convex envelopment of data: Applying isotonic regression to frontier estimation," European Journal of Operational Research, Elsevier, vol. 231(2), pages 481-491.
    9. Mahmood Mehdiloo & Jafar Sadeghi & Kristiaan Kerstens, 2024. "Top Down Axiomatic Modeling of Metatechnologies and Evaluating Directional Economic Efficiency," Working Papers 2024-EQM-03, IESEG School of Management.
    10. Walter Briec & Kristiaan Kerstens & Philippe Venden Eeckaut, 2004. "Non-convex Technologies and Cost Functions: Definitions, Duality and Nonparametric Tests of Convexity," Journal of Economics, Springer, vol. 81(2), pages 155-192, February.
    11. Podinovski, V. V., 2005. "Selective convexity in DEA models," European Journal of Operational Research, Elsevier, vol. 161(2), pages 552-563, March.
    12. Philippe K. Widmer & Peter Zweifel, 2008. "Public Good Provision in a Federalist Country: Tiebout Competition, Fiscal Equalization, and Incentives for Efficiency in Switzerland," SOI - Working Papers 0804, Socioeconomic Institute - University of Zurich, revised Dec 2010.
    13. Sergio Destefanis & Vania Sena, 2005. "Public capital and total factor productivity: New evidence from the Italian regions, 1970-98," Regional Studies, Taylor & Francis Journals, vol. 39(5), pages 603-617.
    14. Walter Briec & Kristiaan Kerstens & Ignace Van de Woestyne, 2022. "Nonconvexity in Production and Cost Functions: An Exploratory and Selective Review," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 18, pages 721-754, Springer.
    15. David J Mayston, 2017. "Convexity, quality and efficiency in education," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(4), pages 446-455, April.
    16. Leleu, Herve, 2006. "A linear programming framework for free disposal hull technologies and cost functions: Primal and dual models," European Journal of Operational Research, Elsevier, vol. 168(2), pages 340-344, January.
    17. H Leleu, 2009. "Mixing DEA and FDH models together," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1730-1737, December.
    18. Jean-Paul Chavas & Kwansoo Kim, 2015. "Nonparametric analysis of technology and productivity under non-convexity: a neighborhood-based approach," Journal of Productivity Analysis, Springer, vol. 43(1), pages 59-74, February.
    19. Fukuyama, Hirofumi & Shiraz, Rashed Khanjani, 2015. "Cost-effectiveness measures on convex and nonconvex technologies," European Journal of Operational Research, Elsevier, vol. 246(1), pages 307-319.
    20. Kuosmanen, Timo, 2001. "DEA with efficiency classification preserving conditional convexity," European Journal of Operational Research, Elsevier, vol. 132(2), pages 326-342, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:14:y:2006:i:1:p:135-166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.